
An EfficientQuery Recovery Attack Against a
Graph Encryption Scheme

Francesca Falzon
Brown University

University of Chicago
United States of America

francesca_falzon@brown.edu

Kenneth G. Paterson
ETH Zürich
Switzerland

kenny.paterson@inf.ethz.ch

ABSTRACT
Ghosh, Kamara and Tamassia (ASIA CCS 2021) presented a Graph
Encryption Scheme supporting shortest path queries. We show
how to perform a query recovery attack against this GKT scheme
when the adversary is given the original graph together with the
leakage of certain subsets of queries. Our attack falls within the se-
curity model used by Ghosh et al., and is the first targeting schemes
supporting shortest path queries. Our attack uses classical graph al-
gorithms to compute the canonical names of the single-destination
shortest path spanning trees of the underlying graph and uses these
canonical names to pre-compute the set of candidate queries that
match each response. Then, when all shortest path queries to a
single node have been observed, the canonical names for the corre-
sponding query tree are computed and the responses are matched
to the candidate queries from the offline phase. The output is guar-
anteed to contain the correct query. For a graph on 𝑛 vertices, our
attack runs in time 𝑂 (𝑛3) and matches the time complexity of the
GKT scheme’s setup. We evaluate the attack’s performance using
the real world datasets used in the original paper and on random
graphs, and show that for the real-world datasets as many as 21.9%
of the queries can be uniquely recovered and as many as 50% of the
queries result in sets of only three candidates.

KEYWORDS
encrypted databases, leakage-abuse attacks, cryptanalysis

1 INTRODUCTION
Graphs are a powerful tool that can be used to model many prob-
lems related to social networks, biological networks, geographic
relationships, etc. Plaintext graph database systems have already
received much attention in both industry (e.g. Amazon Neptune [2],
Facebook TAO [4], Neo4j [21], GraphDB [22]) and academia (e.g.
Pregel [18], GraphLab [17], Trinity [26]).

With the rise of data storage outsourcing, there is an increased
interest in Graph Encryption Schemes (GES). A GES enables a
client to encrypt a graph, outsource the storage of the encrypted
graph to an untrusted server, and finally to make certain types of
graph queries to the server. Current GES typically only support
one type of query, e.g. adjacency queries [7], neighbor queries [7],
approximate shortest distance queries [19], and exact shortest path
queries [12, 27].

In this paper, we analyse the security of the GES of Ghosh, Ka-
mara and Tamassia [12] from ASIA CCS 2021. We refer to this
scheme henceforth as the GKT scheme. The GKT scheme encrypts
a graph 𝐺 such that when a shortest path query (𝑢, 𝑣) is issued for
some vertices 𝑢 and 𝑣 of𝐺 , the server returns information allowing

the client to quickly recover the shortest path between 𝑢 and 𝑣 in
𝐺 . The scheme pre-computes a matrix called the SP-matrix from
which shortest paths can be efficiently computed, and then creates
an encrypted version of this matrix which we refer to as the en-
crypted database (EDB). EDB is sent to the server. At query time,
the client computes a search token for the query (𝑢, 𝑣); this token is
sent to the server and is used to start a sequence of look-ups to EDB.
Each look-up results in a new token and a ciphertext encrypting
the next vertex on the shortest path from 𝑢 to 𝑣 . The concatenation
of these ciphertexts is returned to the client and decrypting this
sequence reveals the vertices in the shortest path.

The GKT scheme of [12] is very elegant and efficient. For a
graph on 𝑛 vertices, computing the SP-matrix takes time 𝑂 (𝑛3)
and dominates the setup time. Building a search token involves
computing a pseudo-random function. Processing a query (𝑢, 𝑣) at
the server requires 𝑡 look-ups in EDB, where 𝑡 is the length of the
shortest path from 𝑢 to 𝑣 . Importantly, thanks to the design of the
scheme, query processing can be done without interaction with the
client, except to receive the initial search token and to return the
result. This results in EDB revealing at query time the sequence of
labels (tokens) needed for the recursive lookup and the sequence
of (encrypted) vertices that is eventually returned to the client.

Ghosh et al. [12] provide a security proof of the GKT scheme
in a simulation-based security model that assumes an honest-but-
curious (semi-honest) server. The approach identifies a leakage
profile for the GKT scheme and formally proves that the scheme
leaks nothingmore than this. The leakage profile comes in two parts:
setup leakage (available to the server upon receipt of the encrypted
data structure) and query leakage (that becomes available to the
server as it processes each query). Specifically, the query leakage
leaks when two queries are equal i.e. the query pattern, the length
of the queried path, and how two paths with the same destination
intersect.

We exploit the query leakage of the GKT scheme to mount a
query recovery (QR) attack against the scheme. Our attack can be
mounted by the honest-but-curious server and requires knowledge
of the graph 𝐺 . This may appear to be a strong requirement, but
is in fact weaker than is permitted in the security model of [12],
where the adversary can even choose𝐺 . Assuming that the graph𝐺
is public is a standard assumption for many schemes that support
private graph queries [12, 20, 25]. This model is perfect for routing
and navigation systems in which the road network may easily be
obtained online via Google Maps or Waze, but the client may wish
to keep its queries private. In such a scenario, the map and traffic
information are widely available, but the routing information of
individual users is sensitive.

1

Conference ’22, June 2022, Nagasaki, Japan Francesca Falzon and Kenneth G. Paterson

Our attack has two phases. First, it has an offline, pre-processing
phase that is carried out on the graph 𝐺 . In this phase, we extract
from𝐺 a plaintext description of all its shortest path trees. We then
process these trees and compute candidate queries for each query
using each tree’s canonical labels. A canonical label is an encoding
of a graph that can be used to decide when graphs are isomorphic; a
canonical label of a rooted tree can be computed efficiently using the
AHU algorithm [1]. This concludes the offline phase of the attack.
Its time complexity is 𝑂 (𝑛3) where 𝑛 is the number of vertices in
𝐺 , and matches the run time of our overall attack and the run time
of the GKT scheme’s setup. Both our attack and the setup are lower
bounded by the time to compute the all-pairs shortest paths, which
takes 𝑂 (𝑛3) time for general graphs [11].

The second phase of the attack is online: As queries are issued,
the adversary constructs a second set of trees that correspond to
the sequence of labels computed by the server when processing
each query i.e. the per-query leakage of the scheme. That leakage is
uniquely determined by the search token that initiates the look-up.
This description uses the labels of EDB (which are search tokens) as
vertices; two labels are connected if the first points to the second in
EDB. When an entire tree has been constructed, then the adversary
can run the AHU algorithm again to compute the canonical names
associated with this query tree. An entire query tree 𝑄 can be built
when all queries to a particular destination have been issued. In
practice, this is a realistic routing scenario where many trips may
share a common popular destination (e.g. an airport, school, or
distribution center).

By correctness of the scheme, there exists a collection of iso-
morphisms mapping 𝑄 to at least one tree computed in the offline
phase. Such isomorphisms also map shortest paths to shortest paths.
We thus perform a matching between the paths in the trees from
the online phase to the trees in the offline phase. This can be done
efficiently using a modified AHU algorithm [1] that we develop
and which decides when one path can be mapped to another by
an isomorphism of trees. This yields two look-up tables which,
when composed, map each path in the first set of trees to a set of
candidate paths in the second set. We use the search token of the
queries associated with 𝑄 to look up the possible candidate queries
in the tables computed in the online phase, and output them. The
runtime of this phase is 𝑂 (𝑛′ · 𝑛2) where 𝑛′ ≤ 𝑛 is the number of
complete query trees computed in the online phase. The output is
guaranteed to contain the correct query.

In general, the leakage from a query can be consistent with
many candidates for that query, and the correct candidate cannot be
uniquely determined. Graph theoretically, this is because there can
be many possible isomorphisms between pairs of trees in our two
sets. If we consider the chosen graph setting, it is easy to construct
a graph 𝐺 where, given any query tree 𝑄 of 𝐺 , its isomorphism is
uniquely determined and there is a unique candidate for each query
of 𝑄 , i.e. we can achieve what we call full query recovery (FQR).
For such graphs, the GKT scheme offers almost no protection to
queries. In other cases, the query leakage may result in one or only a
few possible query candidates, which may be damaging in practice.
In order to explore the effectiveness of our attack, we support it
with experiments on 8 real-world graphs (6 of which were used
in [12]) and on random graphs with varying graph sizes and edge
probabilities. Our results show that for the given real-world graphs,

as many as 21.9 % of all queries can be uniquely recovered and as
many as half of all queries can be mapped to at most 3 candidate
queries. Our experimental results show that query recovery tends
to result in smaller sets of candidate queries when the graphs are
less dense, and that dense graphs tend to have more symmetries and
hence result in larger sets of candidate queries. Note also that our
attack is best possible: it always outputs a minimal set of candidates
consistent with the query leakage, and the correct query is always
included in the set.

We summarize our core contributions as follows:

(1) We present the first attack against a GES that supports short-
est path queries, and the second known attack against GESs,
to our knowledge.

(2) We use the GKT scheme’s leakage to mount an efficient
query recovery attack against the scheme. We explain how,
for our real world datasets, the set of all query trees can be
recovered with as few as 68.1% of the queries.

(3) We make use of the classical AHU algorithm for the graph
isomorphism problem for rooted trees and develop a new al-
gorithm for deciding when a path in one tree can be mapped
onto a path in another under an isomorphism. Our support-
ing graph theoretic theorems may be of independent interest.

(4) We evaluate our attack against real-world datasets and ran-
dom graphs.

(5) We motivate the need for detailed cryptanalysis of GESs.

1.1 Prior and Related Work
We now describe prior and related work concerning graph encryp-
tion schemes and leakage abuse attacks on structured encryption.
Graph Encryption. Chase and Kamara present the first graph
encryption scheme that supports both adjacency queries and fo-
cused subgraph queries [7]. Poh et al. give a scheme for encrypting
conceptual graphs [23]. Meng et al. present three schemes that
support approximate shortest path queries on encrypted graphs,
each with a slightly different leakage profile [19]. To reduce storage
overhead, their solution leverages sketch-based oracles that select
seed vertices and store the exact shortest distance from all vertices
to the seeds; these distances are then used to estimate shortest
paths between any two vertices in the graph. Ghosh et al. [12] and
Wang et al. [27] present schemes that supports exact shortest path
queries on encrypted graphs.

Other solutions for privacy preserving graph structures use other
techniques like secure multiparty computation and private informa-
tion retrieval (e.g. [15, 28]) and differential privacy (e.g. [24]). These
approaches have different security goals from encrypted database
schemes that are built on symmetric encryption.
Attacks. The leakage of graph encryption schemes was first an-
alyzed by Goetschmann [13]. The author considers schemes that
support approximate shortest path queries that use sketch-based
distance oracles (e.g. [19]), presents two methods for estimating
distances between nodes, and gives a query recovery attack that
aims to recover the vertices in an encrypted query; the experimen-
tal evaluation demonstrates that with auxiliary knowledge on some
queries, the adversary can distinguish among candidate vertices
which vertex was queried. Our attack is also a query recovery attack,

2

An Efficient Query Recovery Attack Against a
Graph Encryption Scheme Conference ’22, June 2022, Nagasaki, Japan

but uses knowledge of the graph 𝐺 rather than partial knowledge
of some queries.

2 PRELIMINARIES
Notation. For some integer 𝑛, let [𝑛] = {1, 2, . . . , 𝑛}. We denote
concatenation of two strings 𝑎 and 𝑏 as 𝑎 | |𝑏.
Graphs. A graph is a pair 𝐺 = (𝑉 , 𝐸) consisting of a vertex set
𝑉 of size 𝑛 and an edge set 𝐸 of size𝑚. A graph is directed if the
edges specify a direction from one vertex to another. Two vertices
𝑢, 𝑣 ∈ 𝑉 are connected if there exists a path from 𝑢 to 𝑣 in 𝐺 . In
this paper, we assume that all graphs𝐺 are connected for simplicity
of presentation. However our attack and its constituent algorithms
directly apply to multi-component graphs too.

A tree is a connected, acyclic graph. A rooted tree 𝑇 = (𝑉 , 𝐸, 𝑟)
is a tree in which one vertex 𝑟 has been designated the root. For
some rooted tree 𝑇 = (𝑉 , 𝐸, 𝑟) and vertex 𝑣 ∈ 𝑉 we denote by 𝑇 [𝑣]
the subtree of 𝑇 induced by 𝑣 and all its descendants.

Given a graph 𝐺 = (𝑉 , 𝐸) and some vertex 𝑣 ∈ 𝑉 , we define
a single-destination shortest path (SDSP) tree for 𝑣 to be a di-
rected spanning tree 𝑇 such that 𝑇 is a subgraph of𝐺 , 𝑣 is the only
sink in 𝑇 , and each path from 𝑢 ∈ 𝑉 \ {𝑣} to 𝑣 in 𝑇 is a shortest
path from 𝑢 to 𝑣 in 𝐺 . An example of an SDSP tree can be found in
Figure 1c.

We also define two binary options on graphs. Given two graphs
𝐺 = (𝑉 , 𝐸) and 𝐻 = (𝑉 ′, 𝐸 ′), the union of 𝐺 and 𝐻 is defined as
𝐺 ∪𝐻 = (𝑉 ∪𝑉 ′, 𝐸 ∪𝐸 ′). Given a graph𝐺 = (𝑉 , 𝐸) and a subgraph
𝐻 = (𝑉 ′, 𝐸 ′) such that 𝑉 ′ ⊆ 𝑉 , 𝐸 ′ ⊆ 𝐸, the graph subtraction of 𝐻
from 𝐺 is defined as 𝐺 \ 𝐻 = (𝑉 \𝑉 ′, 𝐸 \ 𝐸 ′).
Dictionaries. A dictionary D is a map from some label space L
to a value space V. If lab ↦→ val, then we write D[lab] = val.
Hash functions. A set 𝐻 of functions 𝑈 → [𝑀] is a universal
hash function family if, for every distinct 𝑥,𝑦 ∈ 𝑈 the hash
function family 𝐻 satisfies the following constraint:

Pr
ℎ←𝐻
[ℎ(𝑥) = ℎ(𝑦)] ≤ 1/𝑀.

2.1 Graph Isomorphisms
Our approach will make heavy use of graph isomorphisms and
automorphisms.

Definition 2.1. An isomorphism of graphs 𝐺1 = (𝑉1, 𝐸1) and
𝐺2 = (𝑉2, 𝐸2) is a bijection between vertex sets 𝜑 : 𝑉1 → 𝑉2 such
that for all 𝑢, 𝑣 ∈ 𝑉1, (𝑢, 𝑣) ∈ 𝐸1 if and only if (𝜑 (𝑢), 𝜑 (𝑣)) ∈ 𝐸2 . If
such an isomorphism exists, we write 𝐺1 � 𝐺2.

Definition 2.2. An isomorphismof rooted trees𝑇1 = (𝑉1, 𝐸1, 𝑟1)
and 𝑇2 = (𝑉2, 𝐸2, 𝑟2) is an isomorphism 𝜑 from 𝑇1 to 𝑇2 (as graphs)
such that 𝜑 (𝑟1) = 𝑟2.

2.2 Canonical Names
A canonical name Name(·) is an encoding mapping graphs to
bit-strings such that, for any two graphs 𝐻 and 𝐺 , Name(𝐺) =
Name(𝐻) if and only if𝐺 � 𝐻 . For rooted trees Aho, Hopcraft, and
Ullman (AHU) [1] describe an algorithm for computing a specific
canonical name in𝑂 (𝑛) time. We refer to this as the canonical name
and describe it next.

The AHU Algorithm. In this paper, we use a modified AHU algo-
rithm, which we denote as ComputeNames, to compute the canon-
ical names of rooted trees (and their subtrees) and determine if
they are isomorphic. ComputeNames takes as input a rooted tree
𝑇 = (𝑉 , 𝐸, 𝑟), a vertex 𝑣 ∈ 𝑉 , and an empty dictionaryNames. It out-
puts the canonical name of the subtree𝑇 [𝑣] (which we also refer to
as the canonical name of 𝑣) and a dictionary Names that maps each
descendent𝑢 of 𝑣 to the canonical name of𝑇 [𝑢]. The algorithm pro-
ceeds from the leaves to the root. It assigns the name ‘10’ to all leaves
of the tree. It then recursively visits each descendent 𝑢 of 𝑣 and
assigns 𝑢 a name by sorting the names of its children in increasing
lexicographic order, concatenating them into an intermediate name
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛_𝑛𝑎𝑚𝑒𝑠 and assigning the name ‘1| |𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛_𝑛𝑎𝑚𝑒𝑠 | |0’ to
𝑢 (see Figure 1b for an example). The canonical name of𝑇 ,Name(𝑇),
is the name assigned to the root 𝑟 by this algorithm. Pseudocode
for ComputeNames is given in Appendix A.

3 THE GKT GRAPH ENCRYPTION SCHEME
In this section, we give an overview of the graph encryption scheme
of Ghosh et al. [12] and describe its leakage.

3.1 GKT Scheme Overview
TheGKT scheme supports single pair shortest path (SPSP) queries.
The graphs may be directed or undirected, and the edges may be
weighted or unweighted. An SPSP query on a graph 𝐺 = (𝑉 , 𝐸)
takes as input a pair of vertices (𝑢, 𝑣) ∈ 𝑉 ×𝑉 , and outputs a path
𝑝𝑢,𝑣 = (𝑢,𝑤1, . . . ,𝑤ℓ , 𝑣) such that (𝑢,𝑤1), (𝑤1,𝑤2), . . . , (𝑤𝑡−1, 𝑣) ∈
𝐸. We require that this path is of minimal length in𝐺 , i.e. there does
not exist a sequence of edges (𝑢,𝑤 ′1), (𝑤

′
1,𝑤
′
2), . . . , (𝑤

′
𝑡−1′, 𝑣) ∈ 𝐸

such that 𝑡 ′ < 𝑡 .
SPSP queries may be answered using a number of different data

structures. The GKT scheme makes use of the SP-matrix [8]. For a
graph 𝐺 = (𝑉 , 𝐸), the SP-matrix𝑀 is a |𝑉 | × |𝑉 | matrix defined as
follows. Entry𝑀 [𝑖, 𝑗] stores the second vertex along the shortest
path from vertex 𝑣𝑖 to 𝑣 𝑗 ; if no such path exists, then it stores ⊥.
An SPSP query (𝑣𝑖 , 𝑣 𝑗) is answered by computing 𝑀 [𝑖, 𝑗] = 𝑣𝑘 to
obtain the next vertex along the path and then recursing on (𝑣𝑘 , 𝑣 𝑗)
until ⊥ is returned.

At a high level, the GKT scheme proceeds by computing an SP-
matrix for the query graph and then using this matrix to compute
a dictionary SPDX′. This dictionary is then encrypted using a dic-
tionary encryption scheme (DES) such as [5, 7]. To ensure that
the GKT scheme is non-interactive, the underlying DES must be
response-revealing. Since it is germane to our analysis, we provide
the syntax of a DES next.

Definition 3.1. A dictionary encryption scheme (DES) is a tu-
ple of four algorithms DES = (DES.Gen,DES.Encrypt,DES.Token,
DES.Get) with the following syntax:
• DES.Gen is probabilistic and takes as input a security pa-
rameter 𝜆, and outputs a secret key sk.
• DES.Encrypt takes as input a key sk and dictionary D, and
outputs an encrypted dictionary ED.
• DES.Token takes as input a key sk and a label lab, and out-
puts a search token tk.
• DES.Get takes as input a search token tk and an encrypted
dictionary ED, and returns a plaintext value val.

3

Conference ’22, June 2022, Nagasaki, Japan Francesca Falzon and Kenneth G. Paterson

Correctness for a DESDES states that for all dictionariesD, for all
keys sk output by DES.Gen and for pairs (lab, val) in D, executing
DES.Get on input tk = DES.Token(sk, lab) and dictionary ED =

DES.Encrypt(sk,D) results in output val.
Note that while the GKT scheme itself is response-hiding (i.e.

the shortest path is not returned in plaintext to the client), the
underlying DES used in the scheme is response-revealing, that is,
the values in its encrypted dictionary ED are revealed at query time.
The response-revealing property of the DES is necessary to enable
the GKT scheme to operate in a non-interactive manner.

Now we provide a detailed description of the GKT scheme. At
setup, the client generates two secret keys: one for a symmetric
encryption scheme SKE, and one for a dictionary encryption scheme
DES. It takes the input graph𝐺 and computes the SP-matrix𝑀 [𝑖, 𝑗].
It then computes a dictionary SPDX such that for each pair of
vertices (𝑣𝑖 , 𝑣 𝑗) ∈ 𝑉 × 𝑉 , we set SPDX[(𝑣𝑖 , 𝑣 𝑗)] = (𝑤, 𝑣 𝑗) if 𝑖 ≠ 𝑗

and in the SP-matrix we have𝑀 [𝑖, 𝑗] = 𝑤 for some vertex𝑤 .
The client then computes a second dictionary SPDX′ as follows.

For each label-value pair (lab, val) in SPDX the following steps are
carried out. A search token tk is computed from val using algo-
rithm DES.Token and a ciphertext 𝑐 is computed by encrypting val
using SKE.Encrypt. Then SPDX′[lab] is set to (tk, 𝑐). The resulting
dictionary SPDX′ is then encrypted using DES.Encrypt to produce
an output EDB, which is given to the server.

Now the client can issue an SPSP query for a vertex pair (𝑢, 𝑣) by
generating a search token tk for (𝑢, 𝑣) and sending it to the server.
The server initializes an empty string resp and uses tk to search EDB
and obtain a response 𝑎. If 𝑎 =⊥, then it returns resp. Otherwise, it
parses 𝑎 as (tk′, 𝑐), updates resp = resp| |𝑐 and recurses on tk′ until
⊥ is reached on look-up. The server returns resp, a concatenation
of ciphertexts (or ⊥) to the client. The client then uses its secret key
to decrypt resp, obtaining a sequence of pairs val = (𝑤𝑘 , 𝑣) from
which the shortest path from 𝑢 to 𝑣 can be constructed.
Complexity. The GKT scheme’s setup takes time 𝑂 (𝑛3) and is
dominated by the cost of computing the SP-matrix. Token gen-
eration takes time 𝑂 (1) (assuming use of an efficient DES) and
querying EDB takes time 𝑂 (𝑡) where 𝑡 is the maximum length of a
shortest path in 𝐺 . The server storage is 𝑂 (𝑛2).

3.2 Leakage of the GKT Scheme

Ghosh et al. [12] provide a formal specification of their scheme’s
leakage. Informally, the setup leakage of their scheme is the number
of vertex pairs in 𝐺 that are connected by a path, while the query
leakage consists of the query pattern (which pairs of queries are
equal), the path intersection pattern (the overlap between pairs of
shortest paths seen in queries), and the lengths of the shortest paths
arising in queries. See [12, Section 4.1] for more details.

Recall that in the GKT scheme, the server obtains EDB by en-
crypting the underlying dictionary SPDX′, in which labels are of
the form lab = (𝑣𝑖 , 𝑣 𝑗) and values are of the form val = (tk, 𝑐), using
a DES. Here tk is a search token obtained by running DES.Token
on a pair (𝑤, 𝑣 𝑗) and 𝑐 is obtained by running SKE.Encrypt also
on (𝑤, 𝑣 𝑗). Since EDB is obtained by running DES on SPDX′, this
means that the labels in EDB are derived from tokens obtained by
runningDES.Token on inputs lab = (𝑣𝑖 , 𝑣 𝑗). Moreover, these tokens

also appear in the values in EDB that are revealed to the server at
query time, that is, in the entries (tk, 𝑐).

In turn, the query leakage reveals to the server the token used
to initiate a search, as well as all the subsequent pairs (tk, 𝑐) that
are obtained by recursively processing such a query. Let us denote
the sequence of search tokens associated with the processing of
some (unknown) query 𝑞 for a shortest path of length 𝑡 as 𝑠 =

tk1∥tk2∥ . . . ∥tk𝑡+1 ∈ {0, 1}∗. We refer to this string as the token
sequence of 𝑞. Since the search tokens correspond to the sequence
of vertices in the queried path, there are as many tokens in the
sequence as there are vertices in the shortest path for the query.
Note that, by correctness of DES used in the construction of EDB,
no two distinct queries can result in the same token sequence (in
fact no two distinct queries can produce the same first token tk1,
since each such first token must be used to derive a unique label in
EDB identifying the beginning of a specific shortest path).

Notice also that token sequences for different queries can be
overlapping; indeed since the tokens are computed by running
DES.Token on inputs lab = (𝑣𝑖 , 𝑣) where 𝑣 is the final vertex of a
shortest path, two token sequences are overlapping if and only if
they correspond to queries (and shortest paths) having the same
end vertex. Hence, given the query leakage of a set of queries, the
adversary can compute all the token sequences and construct from
them 𝑛′ ≤ 𝑛 directed trees, {𝑄𝑖 }𝑖∈[𝑛′] , each tree having at most
𝑛 vertices and a single root vertex. The vertices across all 𝑛′ trees
are labelled with the search tokens in EDB and there is a directed
edge from tk to tk′ if and only if tk and tk′ are adjacent in some
token sequence. (Each tree has at most 𝑛 vertices because of our
assumption about 𝐺 being connected.)

We call this set of trees the query trees. Each query tree cor-
responds to the set of queries having the same end vertex. Each
tree has a single sink (root) that corresponds to a unique vertex
𝑣 ∈ 𝑉 . The tree paths correspond to the shortest paths from vertices
𝑤 ∈ 𝑉 \ {𝑣} to 𝑣 , such that𝑤 and 𝑣 are connected in𝐺 . We note that
Ghosh et al. [12] also discuss these trees but they do not analyze
the theoretical limits of what can be inferred from them.

We denote the leakage of the GKT scheme on a graph 𝐺 after
issuing a set of SPSP queries Q as L(𝐺,Q). For a formal proof of
security that establishes the leakage profile of the GKT scheme
please refer to [12]. We stress that our attacks are based only on the
leakage of the scheme, as established above, and not on breaking
the underlying cryptographic primitives of the scheme.

3.3 Implications of Leakage
Suppose that all queries have been issued and that we have con-
structed all 𝑛 query trees {𝑄𝑖 }𝑖∈[𝑛] , each tree having 𝑛 vertices.
We observe that there exists a one-to-one matching between the
query trees {𝑄𝑖 }𝑖∈[𝑛] and the SDSP trees {𝑇𝑣}𝑣∈𝑉 of 𝐺 such that
each matched pair of trees is isomorphic. The reason is that the
query trees are just differently labelled versions of the SDSP trees;
in turn, this stems from the fact that paths in the query trees are in
1-1 correspondence with the shortest paths in 𝐺 .

This now reveals the core of our query recovery attack, devel-
oped in detail in Section 4 below. The server with access to𝐺 first
computes all the SDSP trees offline. As queries are issued, it then
constructs the query trees one path at a time. Once a complete query

4

An Efficient Query Recovery Attack Against a
Graph Encryption Scheme Conference ’22, June 2022, Nagasaki, Japan

tree𝑄 is computed (recall that each query tree must have 𝑛 vertices
since 𝐺 is connected) the server finds all possible isomorphisms
between𝑄 and the SDSP trees. Then, for each token sequence in𝑄 ,
it computes the set of paths in the SDSP trees to which that token
sequence can be mapped under the possible isomorphisms. This
set of paths yields the set of possible queries to which the token
sequence can correspond. This information is stored in a pair of
dictionaries, which can be used to look up the candidate queries.

To illustrate the core attack idea, Figure 1 depicts (1a) a graph
𝐺 , (1b) its SDSP tree for vertex 1 (with vertex labels and canonical
names), and (1c) the matching query tree (without vertex labels).
It is then clear that the leakage from the unique shortest path of
length 2 in Figure (1c) can only be mapped to the corresponding
path with edges (4, 5), (5, 1) in Figure (1b) under isomorphisms, and
similarly the shortest path of length 1 that is a subpath of that path
of length 2 can only be mapped to path (5, 1). On the other hand, the
3 remaining paths of length 1 can be mapped under isomorphisms
to any of the length 1 paths (2, 1), (3, 1), or (6, 1) and so cannot be
uniquely recovered.

Since the adversary only learns the query trees and token se-
quences from the leakage, the degree of query recovery that can
be achieved based on that leakage is limited. In particular, without
auxiliary information, the adversary can only recover the candidate
queries up to symmetries arising from the isomorphisms between
the query trees and the SDSP trees. In section 5, we show that in
practice this is often not an issue since many queries result in only
a very small number of candidate queries.

4 QUERY RECOVERY
4.1 Threat Model and Assumptions
We consider a passive, persistent, honest-but-curious adversary
that has compromised the server and can observe the initial search
token issued, all subsequent search tokens revealed during the query
processing, and the response. In particular, this adversary could
be the server itself. In Appendix B we briefly outline a modified
version of our attack in which we assume that the adversary has
only compromised the communication channels between the client
and server, and can thus only see the search tokens used to initiate
the recursive look-up and the server responses.

We assume that the adversary knows the graph 𝐺 that has been
encrypted to create EDB. As noted previously, this is a strong as-
sumption, but fits within the security model used in [12] (where 𝐺
can even be chosen) and is realistic in many routing/navigation sce-
narios. We further assume that the adversary sees enough queries
to construct a subset of the 𝑛 query trees. We emphasize that com-
puting all 𝑛 trees does not require observing all possible queries;
in the real world datasets we tested, we were able to construct
all query trees with as few as 68.1% of the possible queries. This
is because constructing a query tree that corresponds to 𝑇𝑣 only
requires observing the queries that start at the leaf nodes of 𝑇𝑣 and
end at 𝑣 . In SDSP trees with few leaves, only a small fraction of
queries is needed.

We assume that the all-pairs shortest path algorithm used in
constructing the SP-matrix from 𝐺 during setup is deterministic.
We assume that this algorithm is known to the adversary. Such an

(a) Original graph𝐺 .

6

3

2

4

1

5

1 10 10 10 1100 0

1010

10

1100 10

(b) SDSP tree for vertex 1. (c) The inferred leakage.

Figure 1: (a) Original graph𝐺 , (b) its corresponding SDSP tree
for vertex 1 in 𝐺 with the canonical names labeling all the
vertices of the tree, and (c) the the matching query tree that
is leaked during setup (without any vertex labels).

assumption is reasonable as the adversary knows𝐺 and many short-
est path algorithms are deterministic, including Floyd-Warshall [11]
and many of its adaptations.

4.2 Formalising Query Recovery Attacks
Query recovery (QR) in general is the goal of determining the
plaintext value of queries that have been issued by the client. The
notion of query recovery was introduced by Islam et al. [14] in
the context of leakage abuse attacks on SSE schemes and has been
extensively studied in the context of SSE and related schemes since.

We study the problem of query recovery in the context of GESs,
specifically, the GKT scheme: given 𝐺 , the setup leakage of the
GKT scheme and the query leakage from a set of SPSP queries,
our adversary’s goal is to match the leakage for each SPSP query
with the corresponding start and end vertices (𝑢, 𝑣) of a path in 𝐺 .
As noted above, there may be a number of candidate queries that
can be assigned to the leakage from each query. We now formally
describe the adversary’s goals.

Definition 4.1. (Consistency) Let 𝐺 = (𝑉 , 𝐸) be a graph, Q =

{𝑞1, . . . , 𝑞𝑘 } be the set of SPSP queries that are issued, and 𝑆 =

{𝑠1, 𝑠2, . . . , 𝑠𝑘 } be the set of token sequences of the queries issued.
An assignment 𝜋 : 𝑆 → 𝑉 ×𝑉 is a mapping from token sequences
to SPSP queries. An assignment 𝜋 is said to be consistent with the
leakage L(𝐺,Q) if it satisfies L(𝐺,Q) = L(𝐺, 𝜋 (𝑆)).

Informally, consistency requires that, for each 𝑠𝑖 ∈ 𝑆 , the query
𝜋 (𝑠𝑖) specified by assignment 𝜋 could feasibly result in the observed
leakage L(𝐺,Q).

Definition 4.2. (QR) Let𝐺 = (𝑉 , 𝐸) be a graph, Q = {𝑞1, . . . , 𝑞𝑘 }
be a set of SPSP queries, and 𝑆 the corresponding set of token

5

Conference ’22, June 2022, Nagasaki, Japan Francesca Falzon and Kenneth G. Paterson

sequences. Let Π be the set of all assignments consistent with
L(𝐺,Q). The adversary achieves query recovery (QR) when it
computes and outputs a mapping: 𝑠 ↦→ {𝜋 (𝑠) : 𝜋 ∈ Π} for all 𝑠 ∈ 𝑆 .

Informally, the adversary achieves query recovery if, for each
𝑠 ∈ 𝑆 (a set of token sequences resulting from queries in Q), it
outputs a set of query candidates {𝜋 (𝑠) : 𝜋 ∈ Π} containing every
query that is consistent with the leakage. Note that this implies that
the output always contains the correct query (and possibly more).
This is the best the adversary can do, given the available leakage.

There is some information not conveyed in this mapping. In
particular, by fixing an assignment for a given token sequence,
we may fix or reduce the possible assignments for other query
responses. We give such an example below.

Example 4.3. Suppose we observe the set of token sequences {𝑠𝑖 :
𝑖 ∈ [5]} such that 𝑠1, 𝑠2, 𝑠3, 𝑠4 correspond to paths of length 1 and 𝑠5
corresponds to a path of length 2, with 𝑠4 a subsequence of 𝑠5, and
which allows us to construct the query tree in Figure 1c. Further sup-
pose that the resulting query tree is not isomorphic to any other query
tree, so we know that all queries in 𝑆 are rooted at 1. An adversary
achieving QR must output the following mappings:

{𝑠1 : {(6, 1), (3, 1), (2, 1)}, 𝑠2 : {(6, 1), (3, 1), (2, 1)},
𝑠3 : {(6, 1), (3, 1), (2, 1)}, 𝑠4 : {(5, 1)}, 𝑠5 : {(4, 1)}}.

However, if the adversary could fix the assignment 𝑠1 to (1, 6) (for ex-
ample, by using auxiliary information) then 𝑠2 could only be mapped
to either (1, 3) or (1, 2).

We now define a special type of query recovery when there
exists only one assignment consistent with the query leakage, i.e.
all queries can be uniquely recovered.

Definition 4.4. (FQR) Let𝐺 = (𝑉 , 𝐸) be a graph, Q = {𝑞1, . . . , 𝑞𝑘 }
be a set of SPSP queries, and 𝑆 the corresponding set of token
sequences. Let Π be the set of assignments consistent with L(𝐺,Q).
We say that the adversary achieves full query recovery (FQR)
when it (a) achieves QR, and (b) |Π | = 1.

That is, there is a unique assignment of token sequences to
queries consistent with the leakage. Whether FQR is always possible
(i.e. for every possible set of queries Q) depends on the graph 𝐺 .
Specifically, we will see that FQR is always possible if and only if
each SDSP tree arising in 𝐺 is non-isomorphic and every path in
each SDSP tree is fixed by all automorphisms of the tree. It is easy to
construct graphs for which these conditions hold (see Section 4.10).
For such graphs, our QR attack always achieves FQR.

4.3 Technical Results

We develop some technical results concerning isomorphisms of
trees and the behaviour of paths under those isomorphisms that
we will need in the remainder of the paper.

For any rooted tree 𝑇 = (𝑉 , 𝐸, 𝑟) and any 𝑢 ∈ 𝑉 , let 𝑇 [𝑢] ⊆ 𝑇

denote the subtree induced by 𝑢 and all its descendants in 𝑇 .
Lemma 4.5. Let𝑇 = (𝑉 , 𝐸, 𝑟) and𝑇 ′ = (𝑉 ′, 𝐸 ′, 𝑟 ′) be rooted trees.

Let 𝑝𝑢,𝑟 = (𝑢,𝑤1, . . . ,𝑤𝑡 , 𝑟) and 𝑝𝑣,𝑟 ′ = (𝑣,𝑤 ′1, . . . ,𝑤
′
ℓ
, 𝑟 ′) be paths

in 𝑇 and 𝑇 ′, respectively. If there exists an isomorphism 𝜑 : 𝑇 → 𝑇 ′

such that 𝜑 (𝑢) = 𝑣 , then 𝑡 = ℓ and 𝜑 (𝑤𝑖) = 𝑤 ′
𝑖
for all 𝑖 ∈ [𝑡].

Proof. By assumption 𝜑 (𝑢) = 𝑣 and by definition of isomor-
phism of rooted trees we also have that 𝜑 (𝑟) = 𝑟 ′. Since 𝑇 is a tree,
then we know that there exists a unique path between 𝑢 and 𝑟 , and
between 𝑣 and 𝑟 ′. Isomorphisms of graphs must be edge preserving,
and so 𝜑 must map the subgraph 𝑝𝑢,𝑟 to 𝑝𝑣,𝑟 ′ . These two paths
can only be isomorphic if they are the same length and thus 𝑡 = ℓ .
Putting together these two facts we have that

(𝜑 (𝑢), 𝜑 (𝑤1)) = (𝑣,𝑤 ′1), (𝜑 (𝑤1), 𝜑 (𝑤2)) = (𝑤 ′1,𝑤
′
2),

. . . , (𝜑 (𝑤𝑡), 𝜑 (𝑟)) = (𝑤𝑡 , 𝑟
′)

which concludes the proof. □

Given a rooted tree𝑇 = (𝑉 , 𝐸, 𝑟) and any𝑢 ∈ 𝑉 , letPathName𝑇 (𝑢)
denote the concatenation of the canonical names of vertices along
the path from 𝑢 to 𝑟 in 𝑇 , separated by semicolons:

PathName𝑇 (𝑢) = Name(𝑇 [𝑢])∥“; ”∥Name(𝑇 [𝑤1])∥“; ”∥
. . . ∥“; ”∥Name(𝑇 [𝑤𝑡])∥“; ”∥Name(𝑇 [𝑟]) . (1)

Computing path names will form the core of our QR attack.
Before we explain how we use them, we prove a sequence of results
about the relationship between path names and isomorphisms. In
Section 4.5 we explain how to apply a universal hash function to
the path names to compress their length from 𝑂 (𝑛2) to 𝑂 (log𝑛)
bits, thereby reducing storage and run time complexity.

Proposition 4.6. Let 𝑇 = (𝑉 , 𝐸, 𝑟) and 𝑇 ′ = (𝑉 ′, 𝐸 ′, 𝑟 ′) be iso-
morphic rooted trees and let 𝐶 and 𝐶 ′ denote the set of children of 𝑟
and 𝑟 ′, respectively. There is an isomorphism from𝑇 to𝑇 ′ if and only
if there is a perfect matching from𝐶 to𝐶 ′ such that for each matched
pair 𝑐𝑖 ∈ 𝐶, 𝑐 ′𝑖 ∈ 𝐶

′, there exists an isomorphism 𝜑𝑖 : 𝑇 [𝑐𝑖] → 𝑇 [𝑐 ′
𝑖
].

Proof. To see the forwards direction, let 𝜑 denote an isomor-
phism from 𝑇 to 𝑇 ′ and note that if 𝜑 (𝑐) = 𝑐 ′ for 𝑐 ∈ 𝐶 , then by
the edge-preservation property of isomorphisms, 𝜑 must map the
vertices of 𝑇 [𝑐] to the vertices of 𝑇 [𝑐 ′], and thus 𝑇 [𝑐] � 𝑇 [𝑐 ′]. For
the backwards direction, we construct an isomorphism 𝜑 from𝑇 to
𝑇 ′. Let 𝜑𝑟 be the trivial isomorphism that takes 𝑟 to 𝑟 ′ and let

𝜑 = 𝜑1 ∪ 𝜑2 ∪ · · · ∪ 𝜑𝑘 ∪ 𝜑𝑟 .
Let (𝑎, 𝑏) ∈ 𝐸. If (𝑎, 𝑏) is an edge in 𝑇 [𝑐𝑖] for some 𝑐𝑖 ∈ 𝐶 then it is
easy to see that by restricting 𝜑 to the vertices in 𝑇 [𝑐𝑖], we have
that (𝜑 (𝑎), 𝜑 (𝑏)) is an edge in 𝑇 ′[𝑐 ′

𝑖
] ⊆ 𝑇 ′. If (𝑎, 𝑏) = (𝑐𝑖 , 𝑟) for

some 𝑐𝑖 ∈ 𝐶 , then (𝜑 (𝑐𝑖), 𝜑 (𝑟)) = (𝑐 ′𝑖 , 𝑟
′). Since 𝑐 ′

𝑖
is a child of 𝑟 ′

then (𝜑 (𝑎), 𝜑 (𝑏)) ∈ 𝐸 ′. A similar argument holds for showing that
if (𝑎, 𝑏) ∈ 𝐸 ′, then (𝜑−1 (𝑎), 𝜑−1 (𝑏)) ∈ 𝐸. □

Lemma 4.7. Let 𝑇 = (𝑉 , 𝐸, 𝑟) and 𝑇 ′ = (𝑉 ′, 𝐸 ′, 𝑟 ′) be isomorphic
rooted trees. Let 𝑢 and 𝑣 be children of 𝑟 and 𝑟 ′, respectively. Suppose
that 𝜎 is an isomorphism from 𝑇 [𝑢] to 𝑇 ′[𝑣]. Then there exists an
isomorphism 𝜑 from 𝑇 to 𝑇 ′ such that 𝜑 |𝑇 [𝑢] = 𝜎 and 𝜑 (𝑢) = 𝑣 .

Proof. Let 𝐶 and 𝐶 ′ denote the set of children of 𝑟 and 𝑟 ′, re-
spectively. Since 𝜑 is an isomorphism and is edge preserving, then
it must map 𝐶 to 𝐶 ′ and we necessarily have that 𝑘 = |𝐶 | = |𝐶 ′ |.

We now use Proposition 4.6 to prove the lemma. Let 𝜑 be any
isomorphism from 𝑇 to 𝑇 ′. If 𝜑 maps 𝑢 to 𝑣 then we are done.
Otherwise, 𝜑 (𝑢) = 𝑐 ′ ≠ 𝑣 and 𝜑−1 (𝑣) = 𝑐 ≠ 𝑢 for some 𝑐 ′ ∈ 𝐶 ′

and 𝑐 ∈ 𝐶 . By Proposition 4.6 we have that 𝑇 [𝑢] � 𝑇 ′[𝑐 ′] and
6

An Efficient Query Recovery Attack Against a
Graph Encryption Scheme Conference ’22, June 2022, Nagasaki, Japan

𝑇 [𝑐] � 𝑇 ′[𝑣], and by assumption we also know that 𝑇 [𝑢] � 𝑇 ′[𝑣].
Thus, by transitivity, we conclude that𝑇 [𝑐] � 𝑇 ′[𝑐 ′]. Let𝑊 be the
vertices in𝑇 \ (𝑇 [𝑢] ∪𝑇 [𝑐]) and let 𝜋 be an isomorphism from𝑇 [𝑐]
to 𝑇 ′[𝑐 ′]. Then 𝜑 = 𝜑 |𝑊 ∪ 𝜎 ∪ 𝜋 is a collection of isomorphisms
on all the trees rooted at the children of the roots. Thus 𝜑 is an
isomorphism from 𝑇 to 𝑇 ′ that maps 𝑢 to 𝑣 . □

We now come to our main technical result:
Theorem 4.8. Let 𝑇 = (𝑉 , 𝐸, 𝑟) and 𝑇 ′ = (𝑉 ′, 𝐸 ′, 𝑟 ′) be rooted

trees and let 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉 ′. There exists an isomorphism 𝜑 : 𝑇 →
𝑇 ′ mapping 𝑢 to 𝑣 if and only if PathName𝑇 (𝑢) = PathName𝑇 ′ (𝑣).

Proof. The forwards direction follows from Lemma 4.5.
For the backwards direction, suppose that PathName𝑇 (𝑢) =

PathName𝑇 ′ (𝑣). Since a path name includes the canonical name of
the entire tree, we deduce that Name(𝑇 [𝑟]) = Name(𝑇 ′[𝑟 ′]); it fol-
lows that𝑇 � 𝑇 ′. Similarly we deduce that𝑇 [𝑢] � 𝑇 ′[𝑣]. More gen-
erally, let 𝑝𝑢,𝑟 = (𝑢,𝑤1, . . . ,𝑤𝑡−1, 𝑟) and 𝑝𝑣,𝑟 ′ = (𝑣,𝑤 ′1, . . . ,𝑤

′
𝑡−1, 𝑟

′)
be paths in 𝑇 and 𝑇 ′, respectively. Then for all 𝑖 ∈ [𝑡 − 1] we have
that Name(𝑇 [𝑤𝑖]) = Name(𝑇 ′[𝑤 ′

𝑖
]).

We now prove the result inductively on the vertices along the
path from 𝑢 to 𝑟 . For the base case, take any isomorphism 𝜑0 from
𝑇 [𝑢] to 𝑇 ′[𝑣] and note that this must necessarily map 𝑢 to 𝑣 .

We can now extend this reasoning level-by-level upwards, at
each stage using the equalities of components of the two path names
to extend the isomorphism. Suppose that for 𝑘 ≤ 𝑡 − 1 there exists
an isomorphism 𝜑𝑘 from 𝑇 [𝑤𝑘] to 𝑇 ′[𝑤 ′𝑘] such that 𝜑𝑘 (𝑢) = 𝑣 . By
equality of path names we have that 𝑇 [𝑤𝑘+1] � 𝑇 ′[𝑤 ′

𝑘+1]. Note
also that 𝑤𝑘 and 𝑤 ′

𝑘
are children of 𝑤𝑘+1 and 𝑤 ′

𝑘+1, respectively.
Applying Lemma 4.7, we see that there exists an isomorphism 𝜑𝑘+1
from 𝑇 [𝑤𝑘+1] to 𝑇 ′[𝑤 ′

𝑘+1] such that 𝜑𝑘+1 |𝑇 [𝑤𝑘] = 𝜑𝑘 . Since 𝑢

is a vertex in 𝑇 [𝑤𝑘], it follows that 𝜑𝑘+1 (𝑢) = 𝜑𝑘 (𝑢) = 𝑣 . This
completes the induction and with it the proof. □

Theorem 4.8 also gives us a method for identifying when there
exists only a single isomorphism between two rooted trees. Suppose
that 𝑇 = (𝑉 , 𝐸, 𝑟) and 𝑇 ′ = (𝑉 ′, 𝐸 ′, 𝑟 ′) are isomorphic rooted trees
and that every vertex 𝑣 ∈ 𝑉 has a distinct path name; then there
exists exactly one isomorphism from 𝑇 to 𝑇 ′. Intuitively, a vertex
in𝑇 can only be mapped to a vertex in𝑇 ′ with the same path name.
So if path names are unique, then each vertex in 𝑇 can only be
mapped to a single vertex in 𝑇 ′, meaning there is only a single
isomorphism available. The converse also holds: if there exists
exactly one isomorphism from 𝑇 to 𝑇 ′, then every vertex 𝑣 ∈ 𝑉
necessarily has a distinct path name. This observation will be useful
in characterizing when query reconstruction results in full query
recovery. We summarise with:

Corollary 4.9. Let 𝑇 = (𝑉 , 𝐸, 𝑟) and 𝑇 = (𝑉 ′, 𝐸 ′, 𝑟 ′) be isomor-
phic rooted trees. Every vertex 𝑣 ∈ 𝑉 has a unique path name in 𝑇 if
and only if there exists a single isomorphism from 𝑇 to 𝑇 ′.

4.4 Overview of the Query Recovery Attack
Our QR attack takes as input the graph 𝐺 , a set of token sequences
corresponding to the set of issued queries, and comprises of the
following steps:

(0) Preprocess the graph offline (Algorithm 2). Compute the
SDSP trees {𝑇𝑣}𝑣∈𝑉 of graph 𝐺 . Then compute a multimap

M that maps each path name arising in the 𝑇𝑣 to the set of
SPSP queries whose start vertices have the same path name.

(1) Compute the query trees online. The trees are constructed
from the token sequences as the queries are issued.

(2) Process the query trees (Algorithm 3). Compute a dictio-
nary D that maps each token sequence to the path name of
the start vertex of the path.

Note that steps 0 and 2 are trivially parallelizable. In the case that
the APSP algorithm is randomized, the adversary can simply run
the attack multiple times to account for different shortest path trees.

In practice, the attack can output a single large table𝑇 matching
token sequences 𝑠 to sets of queries. However, storing this large
table will be more expensive than storing D and M when 𝐺 has
high symmetry. Moreover, D can be indexed by the first token tk in
each token sequence 𝑠 (since tk uniquely determines the sequence).

In the following subsections, we expand on each of the steps in
the above overview.

4.5 Computing the Path Names
Before diving into our attack, we describe our algorithm for com-
puting path names which we use as a subroutine of our attack.
Algorithm 1 (ComputePathNames) takes as input a rooted tree
𝑇 = (𝑉 , 𝐸, 𝑟) and outputs a dictionary mapping each vertex 𝑣 ∈ 𝑉
to its path name. First, we call Algorithm 4 (ComputeNames) on
tree 𝑇 , its root 𝑟 , and an empty dictionary Names, and obtain a
dictionary Names that maps each vertex 𝑣 ∈ 𝑉 to the canonical
name of subtree 𝑇 [𝑣].

We will use a function ℎ drawn from a universal hash function
family 𝐻 to compress the path names from 𝑂 (𝑛2) to 𝑂 (log𝑛). We
initialize an empty dictionary PathNames and set PathNames[𝑟] =
ℎ(Names[𝑟]). We then traverse 𝑇 in a depth first search manner;
when a new vertex 𝑣 is discovered during the traversal, we set
PathNames[𝑣] to the hash of the concatenation of the name of 𝑣
and the path name of its parent 𝑢 i.e.

PathNames[𝑣] = ℎ(Names[𝑣] ∥PathNames[𝑢]). (2)
When all vertices have been explored, PathNames is returned. The
pseudocode for ComputePathNames can be found in Algorithm 1.

Theorem 4.10. Let 𝑇 = (𝑉 , 𝐸, 𝑟) be a rooted tree and PathNames
be the output of running Algorithm 1 on𝑇 . Let 𝐻 be a universal hash
function family mapping {0, 1}∗ → {0, 1}6 log𝑛 . Then for randomly
sampled ℎ ← 𝐻 the expected number of collisions in PathNames is
at most 𝑂 (1/𝑛3).

Proof. Let 𝑢, 𝑣 ∈ 𝑉 be distinct and let (𝑢,𝑤1, . . . ,𝑤𝑘 , 𝑟 = 𝑤𝑘+1)
and (𝑣,𝑤 ′1, . . . ,𝑤

′
𝑘′
, 𝑟 = 𝑤𝑘′+1) be paths in 𝑇 . We thus have

PathNames[𝑢] = ℎ(Names[𝑢] ∥ℎ(Names[𝑤1] ∥ℎ(Names[𝑤2] ∥ ...)))
and similarly for PathNames[𝑣]. For there to be a collision between
their path names then either: (1) Names[𝑢] ∥PathNames[𝑤1] and
Names[𝑣] ∥PathNames[𝑤 ′1] collide or (2) for some 𝑖 ∈ [min{𝑘, 𝑘 ′}]
and 𝑘, 𝑘 ′ ≤ 𝑛 − 2, we have that Names[𝑤𝑖] ∥PathNames[𝑤𝑖+1]
and Names[𝑤 ′

𝑖
] ∥PathNames[𝑤 ′

𝑖+1] collide. Recall that a canonical
name is unique up to isomorphism of the rooted tree.

Let 𝐶𝑢𝑣 denote the event that the path names of 𝑢 and 𝑣 collide,
and let 𝐶 𝑗

𝑢𝑣 denote the event that the 𝑗-th nested hash of 𝑢’s and
𝑣 ’s path names collide. A collision on the path names occurs when

7

Conference ’22, June 2022, Nagasaki, Japan Francesca Falzon and Kenneth G. Paterson

any of the at most 𝑛 pairs of nested hash values (used to compute
the path names of 𝑢 and 𝑣) collide. By definition of universal hash
function we have E[𝐶 𝑗

𝑢𝑣] < 1/𝑛6. Thus, by linearity of expectation,

E[𝐶𝑢𝑣] =
min{𝑘+1,𝑘′+1}∑

𝑗=1
E[𝐶 𝑗

𝑢𝑣] <
𝑛

𝑛6
=

1
𝑛5

.

Let 𝐶 denote the event of any collision of path names in 𝑇 . Then
by linearity of expectation the expected number of collisions is

E[𝐶] =
∑
𝑢

∑
𝑣

E[𝐶𝑢𝑣] <
𝑛2

𝑛5
=

1
𝑛3

.

□

Corollary 4.11. Let 𝐺 = (𝑉 , 𝐸) be a graph and let {𝑇𝑟 }𝑟 ∈𝑉
be the set of SDSP trees of 𝐺 . Let PathNames be the union of the
outputs of running Algorithm 1 on each tree in {𝑇𝑟 }𝑟 ∈𝑉 . Let 𝐻 be a
universal hash function family mapping {0, 1}∗ → {0, 1}6 log𝑛 . Then
for randomly sampled ℎ ← 𝐻 the expected number of collisions in
PathNames is at most 𝑂 (1/𝑛).

We note that to achieve a smaller probability of collision, one
can choose a hash function family 𝐻 whose output length is 𝑐 log𝑛
where 𝑐 > 6. For simplicity we invoke the universal hash function
using SHA-256 truncated to 128 bits.

Lemma 4.12. Let𝑇 = (𝑉 , 𝐸, 𝑟) be a rooted tree on 𝑛 vertices and 𝐻
be a universal hash function family mapping {0, 1}∗ → {0, 1}6 log𝑛 .
Upon input of 𝑇 , Algorithm 1 returns a dictionary of size 𝑂 (𝑛 log𝑛)
mapping each 𝑣 ∈ 𝑉 to a hash of its path name in time 𝑂 (𝑛2).

Proof. Correctness follows easily from Theorem 4.10 and by a
recursive argument.

Calling ComputeNames (Algorithm 4) takes 𝑂 (𝑛2) time. Read-
ing the name of the root 𝑟 and assigning the hash of its name takes
at most time 𝑂 (𝑛). Every node is pushed onto the stack once, and
thus the while loop on line 12 iterates 𝑛 times. Assigning a new
path name on line 16 takes time 𝑂 (𝑛) since Names[𝑣] is 𝑂 (𝑛) bits,
PathNames[𝑢] is 𝑂 (log𝑛) bits, and computing the hash takes con-
stant time. Pushing the children of a given vertex onto the stack
takes time𝑂 (𝑛) for a total run time of𝑂 (𝑛2). PathNamesmaps the
vertices to the hash of their path names. Each vertex and its hashed
path name can be encoded with 𝑂 (log𝑛) bits yielding a dictionary
of size 𝑂 (𝑛 log𝑛). □

4.6 Preprocess the Graph

We first preprocess the original graph𝐺 = (𝑉 , 𝐸) into the𝑛 SDSP
trees. Since the adversary is assumed to have knowledge of 𝐺 , this
step can be done offline. We use the same all-pairs shortest paths
algorithm used at setup on𝐺 to compute the 𝑛 SDSP trees {𝑇𝑣}𝑣∈𝑉 ,
where tree 𝑇𝑣 is rooted at vertex 𝑣 . For unweighted, undirected
graphs, we can use breadth first search for a total run time of
𝑂 (𝑛2 + 𝑛𝑚) where𝑚 = |𝐸 |; For general weighted graphs this has
step has a run time of 𝑂 (𝑛3) [11].

Next, we compute the path names of each vertex in {𝑇𝑟 }𝑟 ∈𝑉 , and
then construct a multimap M that maps the (hashed) path name
of each vertex in {𝑇𝑟 }𝑟 ∈𝑉 to the set of SPSP queries whose start

Algorithm 1: ComputePathNames
Input: Rooted tree𝑇 = (𝑉 , 𝐸, 𝑟) .
Output: Dictionary PathNames.
1: // Compute the canonical name of𝑇 [𝑣] for all 𝑣 ∈ 𝑉 .
2: Initialize empty dictionaries Names and PathNames
3: Initialize empty stack 𝑆
4: Names← ComputeNames(𝑇, 𝑟,Names)
5: ℎ ← 𝐻

6:
7: // Concatenate the canonical names into path names.
8: 𝑆 .push(𝑟)
9: Mark 𝑟 as explored
10: PathNames[𝑟] ← ℎ (Names[𝑟])
11:
12: while 𝑆 ≠ ∅ do
13: 𝑣 ← 𝑆.pop()
14: if 𝑣 is not explored then
15: Let 𝑢 be the parent of 𝑣
16: PathNames[𝑣] = ℎ (Names[𝑣] ∥“; ”∥PathNames[𝑢])
17: Mark 𝑣 as explored
18: for children 𝑤 of 𝑣 do
19: 𝑆.push(𝑤)
20: return PathNames

vertices have the same path name. We leverage Theorem 4.8 to
construct this map and describe the steps in detail below.

We initialize an empty multimapM. For each 𝑟 ∈ 𝑉 we compute
PathNames by running Algorithm 1 (ComputePathNames) on 𝑇𝑟 .
For each vertex 𝑣 in 𝑇𝑟 we compute 𝑝𝑎𝑡ℎ_𝑛𝑎𝑚𝑒 ← PathNames[𝑣],
and checkwhether 𝑝𝑎𝑡ℎ_𝑛𝑎𝑚𝑒 is a label inM. If yes,M[𝑝𝑎𝑡ℎ_𝑛𝑎𝑚𝑒]
← M[𝑝𝑎𝑡ℎ_𝑛𝑎𝑚𝑒]∪{(𝑣, 𝑟)}. OtherwiseM[𝑝𝑎𝑡ℎ_𝑛𝑎𝑚𝑒] ← {(𝑣, 𝑟)}.
The pseudocode for computingM can be found in Algorithm 2.

Lemma 4.13. Let 𝐺 = (𝑉 , 𝐸) be a graph on 𝑛 vertices. Upon input
of 𝐺 , Algorithm 2 returns a multimap of size 𝑂 (𝑛2 log𝑛) mapping
each 𝑣 ∈ 𝑉 to its corresponding path name in time 𝑂 (𝑛3).

Proof. For each vertex 𝑟 ∈ 𝑉 we compute a dictionary mapping
each vertex in 𝑇𝑟 to its respective path names. The correctness of
path names follows from Lemma 4.12.

We now analyze the run time. Computing all-pairs shortest path
takes time𝑂 (𝑛3). The for loop on line 5 iterates through 𝑛 vertices.
For each vertex in 𝑉 , we run Algorithm 1 (ComputePathNames)
which takes𝑂 (𝑛2) time and the inner for loop on line 9 takes𝑂 (𝑛)
time. Thus, the for loop on line 5 takes a total time of 𝑂 (𝑛3).

The multimap maps hashes of the path names to a list of candi-
date queries. The hashed path names have size 𝑂 (log𝑛) and there
are at most 𝑛2 distinct path names; each query corresponds to only
one path name and is 𝑂 (log𝑛) bits long. The multimap thus has
total size 𝑂 (𝑛2 log𝑛). □

4.7 Process the Search Tokens
We must now process the tokens revealed at query time. Recall that
the tokens are revealed such that, the response to any shortest path
query can be computed non-interactively. When a search token tk
is sent to the server, the server recursively looks up each of the
encrypted vertices along the path. The adversary can thus compute

8

An Efficient Query Recovery Attack Against a
Graph Encryption Scheme Conference ’22, June 2022, Nagasaki, Japan

Algorithm 2: PreprocessGraph
Input: A graph𝐺 .
Output: A multimap M mapping path names to sets of SPSP queries.
1: // Compute the set of SDSP trees from𝐺 .
2: Initialize an empty multimap M
3: Compute {𝑇𝑣 }𝑣∈𝑉 by running all-pairs shortest path on𝐺
4:
5: for 𝑟 ∈ 𝑉 do
6: // Compute the path names of each vertex.
7: PathNames← ComputePathNames(𝑇𝑟)
8: // Map path names to candidate queries.
9: for (𝑣, 𝑝𝑎𝑡ℎ_𝑛𝑎𝑚𝑒) in PathNames do
10: if 𝑝𝑎𝑡ℎ_𝑛𝑎𝑚𝑒 is a label in M then
11: M[𝑝𝑎𝑡ℎ_𝑛𝑎𝑚𝑒] ← M[𝑝𝑎𝑡ℎ_𝑛𝑎𝑚𝑒] ∪ {(𝑣, 𝑟) }
12: else
13: M[𝑝𝑎𝑡ℎ_𝑛𝑎𝑚𝑒] ← {(𝑣, 𝑟) }
14: returnM

the query trees using the search tokens revealed at query time. First,
it initializes an empty graph 𝐹 .

As label-value pairs (lab, val) are revealed in EDB, the adversary
parses tkcurr ← lab and (tknext, 𝑐) ← val, and adds (tkcurr, tknext)
as a directed edge to 𝐹 . At any given time, 𝐹 will be a forest com-
prised of 𝑛′ ≤ 𝑛 trees, {𝑄𝑖 }𝑖∈[𝑛′] , such that each 𝑄𝑖 has at most 𝑛
nodes. Identifying the individual trees in the forest can be done in
time 𝑂 (𝑛2). The adversary can compute the query trees online and
the final step of the attack can be run on any set of complete query
trees. A complete query tree corresponds to the set of all queries to
some fixed destination vertex. For ease of explanation, we assume
Algorithm 3 (QueryMapping) takes as input the set of all complete
query trees that have been constructed from the leakage.

4.8 Map the Token Sequences to SPSP Queries
In the last step, we take as input the set of complete query trees
{𝑄𝑖 }𝑖∈[𝑛′] constructed from the leakage. We use the path names
of each vertex in the {𝑄𝑖 }𝑖∈[𝑛′] , to construct a dictionary D that
maps each token sequence 𝑠 to the path name of the starting vertex
of the corresponding path in its resspective query tree .

We first initialize an empty dictionaryD. For each complete query
tree𝑄𝑖 , we compute PathNames← ComputePathNames(𝑄𝑖) and
take the union of PathNames andD. The pseudocode for computing
D can be found in Algorithm 3.

Theorem 4.14. Let𝐺 = (𝑉 , 𝐸) be a graph and EDB be an encryp-
tion of 𝐺 using the GKT scheme. Let {𝑄𝑖 }𝑖∈[𝑛′] be the query trees
constructed from the leakage of queries issued to EDB. Upon input of
𝐺 , Algorithm 2 returns a dictionary M mapping each path name to a
set of SPSP queries in time 𝑂 (𝑛3). Upon input of 𝐺 and {𝑄𝑖 }𝑖∈[𝑛′] ,
Algorithm 3 returns a dictionary D mapping token sequences to path
names in time 𝑂 (𝑛3). Moreover, the outputs D and M have the prop-
erty that, for any token sequence 𝑠 corresponding to a path (𝑣, 𝑟) in
a query tree and for every query (𝑣 ′, 𝑟 ′) ∈ M[D[𝑠]], there exists an
isomorphism 𝜑 from 𝑄 to 𝑇𝑟 ′ such that 𝜑 (𝑣) = 𝑣 ′ and 𝜑 (𝑟) = 𝑟 ′.

Proof. The correctness of {𝑄𝑖 }𝑖∈[𝑛] follows from the correct-
ness of the GKT scheme. DictionaryD contains a map of each vertex
in ∪𝑖∈[𝑛]𝑄𝑖 to its path name. The correctness ofM and D follows
from Lemmas 4.13 and 4.12, respectively.

Algorithm 3:QueryMapping
Input: A graph𝐺 and a set of query trees {𝑄𝑖 }𝑖∈[𝑛′] with 𝑛′ ≤ 𝑛.
Output: A dictionary D mapping search tokens to path names, and a

multimap M mapping path names to sets of SPSP queries.
1: Initialize empty dictionary 𝐷

2: for 𝑖 ∈ [𝑛′] do
3: // Compute the path names of each vertex in the query trees.
4: PathNames← ComputePathNames(𝑄𝑖)
5: D← D ∪ PathNames
6: return D

4

7

2

6

1 3

5 Figure 2: An example graph
forwhich FQR is always pos-
sible, no matter what set of
SPSP queries is issued.

Let (𝑣, 𝑟) be a pair comprised of a non-root vertex 𝑣 and a root
vertex 𝑟 in a complete query tree𝑄 , and let 𝑠 be the token sequence
corresponding to (𝑣, 𝑟). Let (𝑣 ′, 𝑟 ′) ∈ M[D[𝑠]]. By composition of
D and M we must have that PathName𝑄 (𝑣) = PathName𝑇𝑟 ′ (𝑣

′).
Applying Theorem 4.8, there is thus an isomorphism from 𝑄 to 𝑇𝑟 ′
that maps 𝑣 to 𝑣 ′ and 𝑟 to 𝑟 ′.

We now analyze the run time. Preprocessing 𝐺 (Algorithm 2)
takes time 𝑂 (𝑛3). Computing the path names (Algorithm 1) of
𝑛′ ≤ 𝑛 trees takes 𝑂 (𝑛3) time, which gives us an upper bound on
the run time of the whole attack. □

4.9 Recover the Queries
Once the map between each node (token) in a query tree and its
corresponding path name has been computed, the attacker can use
M and D to compute the candidate queries of all queries in the
complete query trees. Given M and D (outputs of Algorithms 2
and 3, respectively) and an observed token 𝑠 matching a query in
the query trees for some unknown query, the adversary can find
the set of queries consistent with 𝑠 by simply computing M[D[𝑠]].

4.10 Full Query Recovery

We conclude this section with a discussion of when FQR is
possible. By the correctness of our attack, this is the case for a
graph 𝐺 , a set of complete query trees {𝑄𝑖 }𝑖∈[𝑛′] , and associated
token sequences 𝑆 when for M ← PreprocessGraph(𝐺), D ←
QueryMapping(𝐺, {𝑄𝑖 }𝑖∈𝑛′) and all 𝑠 ∈ 𝑆 we have |M[D[𝑠]] | = 1.

We can also phrase a condition for FQR feasibility in graph-
theoretic terms. Recall Corollary 4.9, which states that given two
isomorphic rooted trees 𝑇 and 𝑇 ′, if each vertex in 𝑇 has a unique
path name, then there exists only one isomorphism from 𝑇 to 𝑇 ′.
We deduce that FQR is always achievable for any set of complete
query trees, when all 𝑛2 vertices in the SDSP trees have unique
path names. Formally, we have the following:

Corollary 4.15. Let 𝐺 = (𝑉 , 𝐸) be a graph and let {𝑇𝑣}𝑣∈𝑉 be
the set of SDSP trees of 𝐺 . Suppose every vertex in

⋃
𝑣∈𝑉 𝑇𝑣 has a

unique path name (and in particular, each𝑇 ∈ {𝑇𝑣}𝑣∈𝑉 has a unique
canonical name). Then FQR can always be achieved on any complete
query tree(s). The converse is also true.

9

Conference ’22, June 2022, Nagasaki, Japan Francesca Falzon and Kenneth G. Paterson

By correctness, our attack achieves FQR whenever it is possible.
In Figure 4.10, we show an example graph 𝐺 for which FQR is
always possible. Indeed, each tree {𝑇𝑣}𝑣∈[7] has a unique canonical
name, and for all 𝑣 ∈ [7], each vertex 𝑢 in 𝑇𝑣 has a unique path
name. More generally, let G be the family of graphs having one
central vertex 𝑐 and any number of paths all of distinct lengths
appended to 𝑐 . It is easy to see that our attack achieves FQR for all
graphs 𝐺 ∈ G.

5 EXPERIMENTS
We support our theoretical results with experiments on both real
world datasets and random graphs.

5.1 Implementation Details
We implemented our attacks in Python 3.7.6 and ran our experi-
ments on a computing cluster with a 2 x 28 Core Intel Xeon Gold
6258R 2.7GHz Processor (Turbo up to 4GHz / AVX512 Support),
and 384GB DDR4 2933MHz ECC Memory. To generate the leakage,
we implemented the GES from [12] and we used the same machine
for the client and the server. The cryptographic primitives were
implemented using the PyCryptodome library version 3.10.1 [10];
for symmetric encryption we used AES-CBC with a 16B key and
for collision resistant hash functions we used SHA-256. For the
DES, we implemeted Π𝑏𝑎𝑠 from [5] and generated the tokens using
HMACwith SHA-256 truncated to 128 bits. The shortest paths of the
graphs were computed using the single_source_shortest_path
algorithm from the NetworkX library version 2.6.2 [9].

To implement our attacks, we used used the same shortest path
algorithm from NetworkX as in our scheme implementation. We
also used our own implementation of the AHU algorithm (Algo-
rithm 4) to compute canonical names. As mentioned previously,
the attack is highly parallelizable, and we exploited this property
when implementing our attack.

5.2 Graph Datasets
We evaluate our attacks on 6 of the same data sets as [12]; in addition
we use the InternetRouting dataset from the University of Oregon
Route Views Project collected on January 2, 2000 and the facebook-
combined dataset. All 8 of these datasets were obtained from [16].
The InternetRouting and CA-GrQc datasets were extracted from
the original datasets using the dense subset extraction algorithm
by Charikar [6] as implemented by Ambavi et al. [3]. Details about
these datasets can be found in Table 1.

In addition to real world datasets, we deployed our attacks
on random graphs for 𝑛 = 100, 250, 500, 1000 and edge probabil-
ities 𝑝 = 0.2, 0.4, 0.6, 0.8. The graphs were generated using the
fast_gnp_random_graph function from NetworkX [9].

5.3 Query Reconstruction Results
Real world datasets. We carried out our attack on the Internet
Routing, CA-GrQc, email-EU-Core, facebook-combined, and p2p-
Gnutella08 datasets; The online portion of the attack (Algorithm 3)
given all queries ran in 0.087s, 0.093s, 5.807s, 102.670s, and 339.957s
for each dataset, respectively. For the first four datasets, we also
ran attacks given 75% and 90% of the queries averaged over 10 runs
and sampled as follows: The start vertex was chosen uniformly at

random and the end vertex was chosen with probability linearly
proportional to its out degree in the original graph. This simulates
a more realistic setting in which certain “highly connected” des-
tinations are chosen with higher frequency. The results of these
experiments can be found in Table 2. Queries can be reconstructed
with just 75% of the queries. In fact, with high probability, we start
seeing complete query trees with as few as 20% of the queries for
the facebook-combined dataset.

For the remaining datasets we ran simulations to demonstrate
the success that an adversary could achieve given 100% of the
queries. Our simulations were carried out as follows. Given 𝐺 , the
SDSP trees and the path names for each vertex in these trees were
computed, and then a dictionary mapping each query in𝐺 to the
set of candidate queries was constructed by identifying queries
whose starting vertices have the same path name. The simulations
only used the plaintext graph and the results show the success
that an adversary would achieve in an end-to-end attack. We ran
simulations for the larger graphs since storing all possible responses
is very memory intensive; In practice, our attack can be run on
larger datasets by writing the map out to a back-end key-value
store. These results can be found in the bottom row of Table 2.

In Table 1 we report the percent of uniquely recoverable queries
when the attack is run on the set of all query trees. Uniquely
recoverable queries are queries whose responses result in only
one candidate. CA-GrQc had the smallest percentage of uniquely
recoverable queries (0.145%) and the p2p-Gnutella04 had the largest
percentage (21.911%). The small percentage for CA-GrQc can be
attributed to its high density (𝑑 = 0.995), where density is defined
as 𝑑 = 2𝑚/(𝑛 · (𝑛−1)). The CA-GrQc graph is nearly complete, and
its SDSP trees display a high degree of symmetry. In fact, many of
the query trees are isomorphic to the majority of SDSP trees, and
the majority of SDSP trees have a star shape. Each non-root vertex
in a star tree has the same path name, resulting in a large number
of possible candidates per token sequence.

In Table 2, we plot the cumulative distribution functions (CDFs)
of our experiments. The four Gnutella data sets exhibit a high
recovery rate that can be explained by asymmetry and low density.
50% percent of all queries for the p2p-Gnutella08, p2p-Gnutella04,
p2p-Gnutella25, p2p-Gnutella30 data sets result in at most 4, 3, 5, 5
candidate query values, respectively. Details of the 50th, 90th, and
99th percentiles can be found in Table 1. Histograms of the results
can be found in Appendix C.
Random graphs. We also deployed our attack on random graphs,
varying the number of nodes (𝑛 = 100, 250, 500, 1000) and the edge
probability (𝑝 = 0.2, 0.4, 0.6, 0.8). Query recovery was carried out af-
ter all possible queries had been issued. For each (𝑛, 𝑝) pair we gen-
erated 50 random graphs, encrypted the graphs using the scheme,
generated the leakage for all possible SPSP queries, and deployed
our query recovery attack on the responses. Then for each recov-
eredmultimap, mapping the response to the set of candidate queries,
we computed the average number of queries that had each possible
number of candidate queries across all 50 graphs. The CDFs of these
results can be found in Table 3.

In general, we see that an increase in 𝑝 and 𝑛 both result in
an increase in the size of the maximum query candidate sets. For
example, for 𝑛 = 100, 𝑝 = 0.2 we have that 6.3% of all queries are

10

An Efficient Query Recovery Attack Against a
Graph Encryption Scheme Conference ’22, June 2022, Nagasaki, Japan

Dataset n m d # Comp # Unique
Total % Unique # Leaves in SDSP trees

Nodes in SDSP trees % Min
Percentile

50 90 99

InternetRouting 35 323 0.543 1 28
1190 2.353 % 1120

1190 94.1 % 40 84 90

CA-GrQc 46 1030 0.995 1 3
2070 0.145 % 2065

2070 99.8 % 1845 1845 1845

email-Eu-core 1005 16,706 0.0331 20 65,659
1,009,020 6.507 % 787,486

1,009,020 78.0 % 16 69 190

facebook-combined 4039 88,234 0.011 1 33,634
16,309,482 0.206 % 16,194,084

16,309,482 99.3 % 1826 11,424 20,480

p2p-Gnutella08 6301 20,777 0.001 2 8,519,868
39,696,300 21.463 % 27,663,800

39,696,300 69.7 % 4 12 64

p2p-Gnutella04 10,876 39,994 0.0006 1 25,915,785
118,276,500 21.911 % 80,580,827

118,276,500 68.1 % 3 9 32

p2p-Gnutella25 22687 54705 0.0002 13 82,736,533
514,677,282 16.075 % 379,383,168

514,677,282 73.7 % 5 18 54

p2p-Gnutella30 36682 88328 0.0001 12 197,413,906
1,345,532,442 14.671 % 1,003,317,663

1,345,532,442 74.6 % 5 24 60

Table 1: A list of all real-world datasets used in our experiments; 𝑛 denotes the number of vertices;𝑚 denotes the number of
edges of the graph dataset; 𝑑 = 2𝑚/(𝑛 · (𝑛 − 1)) denotes the density of the graph. The last three columns show the 50th, 90th,
and 99th percentiles obtained for Query Recovery on the eight real-world datasets.

uniquely recoverable and 50% of all queries are recoverable to at
most 10 candidate queries (representing 0.101% of all queries). For
𝑛 = 1000, 𝑝 = 0.2, we have that 1.5% of all queries are uniquely
recoverable and 50% of all queries are recoverable to at most 107
candidate queries (representing 0.0107% of all queries).

As 𝑝 increases from 0.2 to 0.8, the graphs becomemore dense and
we see a similar trend as seen in the real-world data sets. Denser
graphs are closer to complete, and result in more symmetries and
larger candidate query sets. As 𝑝 increases, we also seemore “waves”
in the CDFs; in the graphs showing the probability density func-
tions (PDFs) (see Appendix C), these correspond to large clusters of
candidate queries all of which have the same path name and hence
which cannot be distinguished in a QR attack.

6 DISCUSSION
We have given a query recovery attack against the GKT graph
encryption scheme from [12]. The attack model we consider is
strong, but it fits within the model used in [12]. The attack begins
with an offline preprocessing phase of the graph. In the online
phase, our attack waits until it has observed all queries to at least
one destination vertex and then outputs a list of candidates for
each of these queries. Our attack has the property that the output
contains everything that is consistent with the leakage (and nothing
more), and always contains the correct query. We have given a
precise characterization of when full query recovery is possible. We
evaluated our attack against real-world and random graphs.

A further variant of our attack – and which is an interesting
open question – applies when arbitrary subsets of queries have been
issued: then the adversary can construct partial query trees and
attempt to identify isomorphic embeddings of them into the SDSP
trees. Yet another variant of our attack, for a network adversary, is
described in Appendix B.

This paper highlights the need for detailed cryptanalysis of graph
encryption schemes. The value of such analysis was recognised
in [12] but omitted on the grounds that the impact of the leakage
is application-specific and can only be assessed in the context of

particular use cases at the time of deployment. Our view is that
such analysis should be done in tandem with security proofs (estab-
lishing leakage profiles) at the same time as schemes are developed.
Of course, attacks should be assessed with respect to real-world
datasets whenever possible, as we do here.

Our attack leaves open the question of whether other graph
encryption schemes can be similarly attacked. On the constructive
side, the question of whether we can build more secure schemes
that utilize chaining in a non-interactive manner and which sup-
port shortest path queries remains open. Another interesting line of
research includes constructing practical interactive graph database
schemes that minimize the communication overhead and number
of rounds between the client and the server. Moreover, there is still
muchwork to be done regarding the design of encrypted graph data-
base schemes that can support a variety of queries – an important
property for schemes in practical settings.

ACKNOWLEDGEMENTS
The first author was funded in part by the ThinkSwiss Research
Scholarship, the NetApp University Research Fund, and ETHZürich.
Parts of this work were written while the first author was visiting
ETH Zürich.

11

Conference ’22, June 2022, Nagasaki, Japan Francesca Falzon and Kenneth G. Paterson

InternetRouting Ca-GrQc email-EU-core facebook-combined

75% of the Queries (averaged over 10 runs)

90% of the Queries (averaged over 10 runs)

100% of the Queries

p2p-Gnutella08 p2p-Gnutella04 p2p-Gnutella25 p2p-Gnutella30

100% of the Queries

Table 2: CDFs for QR of the real-world data sets after observing (row 1) 75%, (row 2) 90%, and (rows 3 and 4) 100% of the queries.
On the 𝑥 axis we plot the number of candidate queries output by our attack and on the 𝑦 axis we plot the percent of total
queries. The red dotted lines indicate the 50th, 90th, and 99th percentiles. Because of Ca-GrQC’s high symmetry, complete
query trees could only be constructed after at least 80% of the queries were observed and hence its first graph is omitted.

12

An Efficient Query Recovery Attack Against a
Graph Encryption Scheme Conference ’22, June 2022, Nagasaki, Japan

𝑝 = 0.2 𝑝 = 0.4 𝑝 = 0.6 𝑝 = 0.8

Table 3: CDFs for QR of randomgraphs for𝑛 = 100, 250, 500, 1000 and 𝑝 = 0.2, 0.4, 0.6, 0.8 after observing 100% of the queries. On the
𝑥 axis we plot the number of candidate queries output by our QR attack and on the 𝑦 axis we plot the percent of total queries.
For each (𝑛, 𝑝) we generated 50 graphs and took an average of the number of vertices with each given set size of candidate
queries. We observe that as the edge probability increases, the number of symmetries, and hence the number of candidate
queries output tends to increase.

REFERENCES
[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey Ullman. 1983. Data Structures and

Algorithms (1st ed.). Addison-Wesley Longman Publishing Co., Inc., USA.
[2] Amazon. 2021. Amazon Neptune. https://aws.amazon.com/neptune/ Accessed

on October 27, 2021.
[3] Heer Ambavi, Mridul Sharma, and Varun Gohil. 2020. Densest-Subgraph-

Discovery. https://github.com/varungohil/Densest-Subgraph-Discovery.
[4] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,

Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkatara-
mani. 2013. TAO: Facebook’s Distributed Data Store for the Social Graph. In 2013
USENIX Annual Technical Conference (USENIX ATC 13). USENIX Association, San
Jose, CA, 49–60.

[5] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic searchable encryption
in very-large databases: data structures and implementation. In 21st Annual Net-
work and Distributed System Security Symposium 2014 (NDSS 2014). The Internet
Society.

[6] Moses Charikar. 2000. Greedy Approximation Algorithms for Finding Dense
Components in a Graph. In Approximation Algorithms for Combinatorial Op-
timization, Klaus Jansen and Samir Khuller (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 84–95.

[7] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled
Disclosure. In Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Information Security
(Lecture Notes in Computer Science, Vol. 6477). Springer, Singapore, 577–594.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[9] NetworkX Developers. 2021. NetworkX. https://networkx.org/ version 2.6.2.
[10] PyCryptodome Developers. 2021. PyCryptodome. https://www.pycryptodome.

org/ version 3.10.1.
[11] Robert W. Floyd. 1962. Algorithm 97: Shortest path. Commun. ACM 5, 6 (1962),

345. https://doi.org/10.1145/367766.368168
[12] Esha Ghosh, Seny Kamara, and Roberto Tamassia. 2021. Efficient Graph En-

cryption Scheme for Shortest Path Queries. In Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security (Virtual Event, Hong
Kong) (ASIA CCS ’21). Association for Computing Machinery, New York, NY,
USA, 516–525.

[13] Anselme Goetschmann. 2020. Design and Analysis of Graph Encryption Schemes.
Master’s Thesis. ETH Zürich.

[14] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.
In 19th Annual Network and Distributed System Security Symposium, NDSS 2012.
The Internet Society, San Diego, California, USA.

[15] Shangqi Lai, Xingliang Yuan, Shi-Feng Sun, Joseph K. Liu, Yuhong Liu, andDongxi
Liu. 2019. GraphSE2: An Encrypted Graph Database for Privacy-Preserving
Social Search. In Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security (Auckland, New Zealand) (Asia CCS ’19). Association
for Computing Machinery, New York, NY, USA, 41–54.

[16] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[17] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and JosephM. Hellerstein. 2012. Distributed GraphLab: A Framework forMachine
Learning and Data Mining in the Cloud. Proc. VLDB Endow. 5, 8 (April 2012),
716–727.

[18] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
Scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (Indianapolis, Indiana, USA) (SIGMOD ’10).
135–146.

[19] Xianrui Meng, Seny Kamara, Kobbi Nissim, and George Kollios. 2015. GRECS:
Graph Encryption for Approximate Shortest Distance Queries. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(Denver, Colorado, USA) (CCS ’15). Association for Computing Machinery, New
York, NY, USA, 504–517.

[20] Kyriakos Mouratidis and Man Lung Yiu. 2012. Shortest Path Computation with
No Information Leakage. Proc. VLDB Endow. 5, 8 (2012), 692–703. https://doi.
org/10.14778/2212351.2212352

[21] Inc. Neo4j. 2021. Neo4j. https://neo4j.com/ Accessed on October 27, 2021.
[22] Ontotext. 2021. GraphDB. https://graphdb.ontotext.com/ Accessed on October

27, 2021.
[23] Geong Sen Poh, Moesfa Soeheila Mohamad, and Muhammad Reza Z’aba. 2012.

Structured Encryption for Conceptual Graphs. In Advances in Information and
Computer Security, Goichiro Hanaoka and Toshihiro Yamauchi (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 105–122.

[24] Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Y. Zhao.
2011. Sharing Graphs Using Differentially Private GraphModels. In Proceedings of
the 2011 ACM SIGCOMM Conference on Internet Measurement Conference (Berlin,
Germany) (IMC ’11). Association for Computing Machinery, New York, NY, USA,
81–98.

[25] Adam Sealfon. 2016. Shortest Paths and Distances with Differential Privacy. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (San Francisco, California, USA) (PODS ’16). Association for
Computing Machinery, New York, NY, USA, 29–41.

[26] Bin Shao, Haixun Wang, and Yatao Li. 2013. Trinity: A Distributed Graph Engine
on a Memory Cloud. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (New York, New York, USA) (SIGMOD ’13).
Association for Computing Machinery, New York, NY, USA, 505–516.

[27] Qian Wang, Kui Ren, Minxin Du, Qi Li, and Aziz Mohaisen. 2017. SecGDB:
Graph Encryption for Exact Shortest Distance Queries with Efficient Updates. In
Financial Cryptography and Data Security - 21st International Conference, FC 2017,
Sliema, Malta, April 3-7, 2017, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 10322), Aggelos Kiayias (Ed.). Springer, 79–97.

[28] David J. Wu, Joe Zimmerman, Jérémy Planul, and John C. Mitchell. 2016. Privacy-
Preserving Shortest Path Computation. In 23rd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. The Internet Society. http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2017/09/privacy-preserving-shortest-path-computation.pdf

13

https://aws.amazon.com/neptune/
https://github.com/varungohil/Densest-Subgraph-Discovery
https://networkx.org/
https://www.pycryptodome.org/
https://www.pycryptodome.org/
https://doi.org/10.1145/367766.368168
http://snap.stanford.edu/data
https://doi.org/10.14778/2212351.2212352
https://doi.org/10.14778/2212351.2212352
https://neo4j.com/
https://graphdb.ontotext.com/
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/privacy-preserving-shortest-path-computation.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/privacy-preserving-shortest-path-computation.pdf

Conference ’22, June 2022, Nagasaki, Japan Francesca Falzon and Kenneth G. Paterson

A AHU ALGORITHM PSEUDOCODE

In this section, we present a slightly modified version the orig-
inal AHU algorithm [1] for computing canonical names of trees.
ComputeNames takes as input a rooted tree 𝑇 = (𝑉 , 𝐸, 𝑟), a vertex
𝑣 ∈ 𝑉 , and dictionary Names. The algorithm returns a dictionary
Namesmapping each descendent𝑢 of 𝑣 to the short canonical name
of the subtree 𝑇 [𝑢]. Maintaining the dictionary Names enables us
to compute the canonical names of the subtrees rooted at each
𝑣 ∈ 𝑉 in a single traversal of 𝑇 . ComputeNames takes time and
space 𝑂 (𝑛2) where |𝑉 | = 𝑛. Note that the original AHU algorithm
can be modified to run in 𝑂 (𝑛) time, by only considering one level
at a time and reassigning integers to the vertices at that level [1].
In contrast, we need to assign names to each vertex in the tree in
order to later compute the path names.

The pseudocode of ComputeNames can be found in Algorithm 4.

Algorithm 4: [1] ComputeNames
Input: Rooted tree𝑇 = (𝑉 , 𝐸, 𝑟) , vertex 𝑣 ∈ 𝑉 , and dictionary Names
Output: Dictionary Names
1: if 𝑣 is a leaf then
2: Names[𝑣] = “10”
3: return Names
4: else
5: Initialize empty list 𝑡𝑒𝑚𝑝 = []
6: for child 𝑢 of 𝑣 do
7: Names← ComputeNames(𝑇, 𝑣,Names)
8: 𝑡𝑒𝑚𝑝.append(Names[𝑢])
9: Sort 𝑡𝑒𝑚𝑝 in ascending order
10: Concatenate names in 𝑡𝑒𝑚𝑝 as 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛_𝑛𝑎𝑚𝑒

11: Names[𝑣] = “1” | |𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛_𝑛𝑎𝑚𝑒 | |“0”
12: return Names

B ATTACK FOR A NETWORK ADVERSARY
Another variant of our attack is possible for a network adversary
rather than a server-based adversary. Such an adversary is assumed
to know 𝐺 but is able to see only the communications between
the client and server, that is, search tokens and responses (which,
recall, are concatenations of ciphertexts). Note that, for an SPSP
query (𝑢, 𝑣), the ciphertexts correspond to the vertices that follow
𝑢 along the path 𝑝𝑢,𝑣 . If the adversary were able to observe the
query leakage from all possible queries then it could initialize a
graph 𝐻 and then for each response parse 𝑐1∥𝑐2∥ . . . ∥𝑐𝑡 ← resp
and add (𝑐𝑖 , 𝑐𝑖+1) to 𝐻 for 𝑖 ∈ [𝑡 − 1]. The components of 𝐻 then
become the trees {𝑄𝑖 }𝑖∈[𝑛] . Note that these trees are the same as
the original query trees, but are missing the leaf nodes. To complete
the attack, the adversary would compute the SDSP trees𝑇𝑣𝑣∈𝑉 and
for every 𝑇 ∈ 𝑇𝑣𝑣∈𝑉 , delete the leaf nodes. Now the adversary can
continue with the attack as described in Section 4.10, i.e. compute
path names and assign the candidate SPSP queries to each resp.
This attack would not be able to recover the candidate query values
for the leaf nodes of the SDSP trees, so is slightly weaker than our
main attack.

C ADDITIONAL EXPERIMENTAL RESULTS
In this section we include supplementary statistics about our exper-
imental results. In Table 4 we plot the histograms of the results for
QR on the real-world datasets assuming 100% of the queries have
been observed. In Table 5 we plot the PDFs of the results for QR on
the random graphs.

14

An Efficient Query Recovery Attack Against a
Graph Encryption Scheme Conference ’22, June 2022, Nagasaki, Japan

InternetRouting Ca-GrQc email-EU-core facebook-combined

p2p-Gnutella08 p2p-Gnutella04∗ p2p-Gnutella25∗ p2p-Gnutella30∗

Table 4: Histograms for QR of the real world data sets after observing 100% of the queries. On the 𝑥 axis we plot the number
of candidate queries output by our QR attack and on the 𝑦 axis we plot the number of queries. The red dotted lines indicate
the 50th, 90th, and 99th percentiles. An asterisk next to the data set indicates that results were obtained via simulation, see
discussion for details.

𝑝 = 0.2 𝑝 = 0.4 𝑝 = 0.6 𝑝 = 0.8

Table 5: PDFs for QR of random graphs after observing 100% of the queries. On the 𝑥 axis we plot the number of candidate
queries output by our QR attack and on the 𝑦 axis we plot the percent of total queries.

15

	Abstract
	1 Introduction
	1.1 Prior and Related Work

	2 Preliminaries
	2.1 Graph Isomorphisms
	2.2 Canonical Names

	3 The GKT Graph Encryption Scheme
	3.1 GKT Scheme Overview
	3.2 Leakage of the GKT Scheme
	3.3 Implications of Leakage

	4 Query Recovery
	4.1 Threat Model and Assumptions
	4.2 Formalising Query Recovery Attacks
	4.3 Technical Results
	4.4 Overview of the Query Recovery Attack
	4.5 Computing the Path Names
	4.6 Preprocess the Graph
	4.7 Process the Search Tokens
	4.8 Map the Token Sequences to SPSP Queries
	4.9 Recover the Queries
	4.10 Full Query Recovery

	5 Experiments
	5.1 Implementation Details
	5.2 Graph Datasets
	5.3 Query Reconstruction Results

	6 Discussion
	References
	A AHU Algorithm Pseudocode
	B Attack for a Network Adversary
	C Additional Experimental Results

