
Reconstructing with Less:
Leakage Abuse Attacks in Two Dimensions

Evangelia Anna Markatou
∗

Brown University

markatou@brown.edu

Francesca Falzon
∗

University of Chicago

ffalzon@uchicago.edu

Roberto Tamassia

Brown University

roberto@tamassia.net

William Schor

Brown University

wschor@cs.brown.edu

Abstract
Access and search pattern leakage from range queries are detri-

mental to the security of encrypted databases, as evidenced by a

large body of work on attacks that reconstruct one-dimensional

databases. Recently, the first attack from 2D range queries showed

that higher-dimensional databases are also in danger (Falzon et al.

CCS 2020). Their attack requires the access and search pattern of

all possible queries. We present an order reconstruction attack that

only depends on access pattern leakage, and empirically show that

the order allows the attacker to infer the geometry of the underlying

data. Notably, this attack also achieves full database reconstruc-

tion when the 1D horizontal and vertical projections of the points

are dense. We also give an approximate database reconstruction

attack that is distribution-agnostic and works with any sample of

queries, given the search pattern and access pattern leakage of those

queries, and the order of the database records. Finally, we show

how to improve the reconstruction given knowledge of auxiliary

information (e.g., the centroid of a related dataset). We support

our results with formal analysis and experiments on real-world

databases with queries drawn from various distributions.

CCS Concepts
• Security and privacy → Cryptanalysis and other attacks.

Keywords
Encrypted Database; Database Reconstruction; Attack

ACM Reference Format:
Evangelia Anna Markatou, Francesca Falzon, Roberto Tamassia, & William

Schor. 2021. Reconstructing with Less: Leakage Abuse Attacks in Two Di-

mensions. In Proceedings of the 2021 ACM SIGSAC Conf. on Computer and
Communications Security (CCS ’21), Nov. 15–19, 2021, Virtual Event, Republic
of Korea.ACM,NY, NY, USA, 19 pages. https://doi.org/10.1145/3460120.3484552

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484552

(a) (b)

Figure 1: Our reconstruction of a spatial dataset with 1,000
points. (a) Order reconstruction from only the access pat-
tern. (b) Approximate geometric reconstruction given the
order of the points and partial search pattern of 1M queries
drawn from a uniform distribution. We achieve an almost
exact reconstruction while prior work [13] needed 455M
queries on average for exact reconstruction.

1 Introduction
The growing adoption of cloud computing and storage in the past

two decades has been accompanied by a corresponding increase

in data breaches. Encrypted cloud storage reduces the risk of such

breaches. In particular, searchable encryption provides a practical

solution for processing queries over encrypted data without the

need for decrypting the data or the queries.

For the sake of efficiency, searchable encryption schemes sacri-

fice full security by leaking some information about the queries and

their responses. As a consequence, the underlying data is vulnera-

ble to inference attacks from this leakage. To defend against such

attacks, a variety of mitigation techniques have been developed.

Works on encryption schemes and mitigation techniques include

[4, 9, 10, 12, 13, 17–20, 23, 25–29, 32–34, 36, 38]. Systems implement-

ing these types of schemes have been developed in both academia

(e.g., [37, 39]) and in industry (e.g., [35]). Regarding reconstruction

attacks, see, e.g., [4, 13, 18–20, 23, 25–29, 32, 34, 38].

The following standard types of leakage occur in searchable

encryption schemes. A scheme leaks the access pattern if the ad-

versary observes the encrypted records returned in response to

queries. A scheme leaks the search pattern if the adversary can

distinguish if a query has been previously issued, i.e., can assign a

unique query identifier to each distinct query.

This work considers an encrypted database with two attributes,

referred to as a two-dimensional (2D) database to which range

∗
EAM and FF are co-first authors who contributed equally and are listed in reverse

alphabetical order.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2243

https://doi.org/10.1145/3460120.3484552

queries are issued. We assume a passive persistent adversary who

observes the entire access pattern leakage, i.e., all possible responses

of queries, and a subset of the search pattern leakage. Our adversary

aims to reconstruct the order of the database records in the two

dimensions (attributes) using solely the access pattern, a problem

called order reconstruction (OR). The adversary then performs an

approximate reconstruction of the (attribute) values of the database

records by using the partial search pattern observed, a problem

called approximate database reconstruction (ADR). A more am-

bitious goal is full database reconstruction (FDR), which aims at

computing the exact record values, up to unavoidable symmetries

and other information theoretic limitations.

1.1 Contributions
Previous work on reconstruction attacks from range queries on 2D

databases [13] assumes that the adversary has knowledge of the

entire access and search pattern leakage (i.e., has seen all possible

queries and their responses) and uses both forms of leakage to

perform an attack that reconstructs the record values in polynomial

time, up to inherent information theoretic limitations. In contrast

to [13], we investigate what information is recoverable from 2D

range queries when given only a fraction of the possible responses.

Wemake progress in this direction with the following contributions:

(1) We show that order reconstruction faces additional information

theoretic limitations when given only access pattern leakage.

We describe and prove a complete characterization of the

family of databases that have the same access pattern leakage.

(2) We present an order reconstruction attack that allows an

adversary with the entire access pattern to build a linear-space

representation of the family of databases in poly-time.

(3) We design a distribution-agnostic approximate database
reconstruction attack that reconstructs record values given

the order of the records, and the search and access pattern

leakage from any number of queries drawn from an unknown

distribution.

(4) We empirically evaluate the effectiveness of our attacks on
real-world datasets using a variety of range query distributions.

(5) We develop new combinatorial and geometric concepts and
algorithms related to point reconstruction from range queries

that may be of independent interest.

Our work provides the first order reconstruction attack in
2D from access pattern leakage and the first approximate re-
construction attack in 2D from partial search pattern leakage
and an unknown query distribution. Our order reconstruction
attack does not require knowledge of the domain size and, instead,

gives us a lower bound of the domain size. This attack is also a full

database reconstruction attack for the case when the 1D horizontal

and vertical projections of the points are dense, i.e., have a record
for every domain value.

Our work improves over the full database reconstruction at-

tack of [13], where the adversary observes both access pattern and

search pattern from all possible queries on the database. This previ-

ous attack fails when even a single query is missing. In contrast,

we demonstrate that an adversary can still infer much about the

original data with significantly less information. In particular,we

achieve order reconstruction given only the access pattern (Fig-

ure 1a) and an effective approximate database reconstruction given

the search pattern from a small fraction of queries (Figure 1b).

Our approximate database reconstruction (ADR) attack can be

viewed as the 2D analogue of the work on attacks on 1D databases

reported in [27]. To apply previous approximation approaches that

assume knowledge of the order to 2D databases, we must com-

pletely characterize order reconstruction in 2D. However, much

like FDR does not trivially extend from the 1D to 2D setting, our

order reconstruction method demonstrates an exponential increase

in the number of indistinguishable point configurations in the 2D

setting. Thus, we cannot simply generalize 1D techniques to 2D. We

re-examine a number of support-size estimators to better suit our

problem. We emphasize that while our techniques are distribution

agnostic (i.e., they do not require knowledge of the query distri-

bution), certain distributions prevent the observation of a large

fraction of responses and records (i.e., a distribution where only a

few queries have nonzero probability) and thus place severe infor-

mation theoretic limits on the accuracy of any approximate recon-

struction method. In Section 6 we examine different non-parametric

estimators and their efficacy under different query distributions.

In Section 7 we build a complex nonlinear system of equations to

model the problem instead of the linear system of [27].

1.2 Encrypted Databases and 2D Range Queries
There are a number of schemes that support two-dimensional range

queries over encrypted data. All existing schemes leak access and

search pattern, and many leak strictly more information. Our work

is motivated by the need to understand what can be learned from

information leakage that seems unavoidable without employing

the use of oblivious RAMs (ORAMs) [16] or fully homomorphic

encryption [15], both of which incur significant overhead.

Shi et al. [41] designed a scheme called Multidimensional Range

Query over Encrypted Data (MRQED) that leverages public key

encryption. Although their model is different, their scheme leaks

strictly more than access and search pattern. MRQED achieves

“match-revealing” security which reveals the attributes of the range

query when the query is successfully decrypted. The scheme builds

a binary tree on the values of each dimension, and releases public

keys corresponding to the nodes that “cover” the range of interest.

The server learns both search and access of the query, the plaintexts

of the matching records, and structural information about range

query issued. Maple is a tree-based public-key multi-dimensional

range searchable encryption scheme [48]. Its goal is to provide

single-dimensional privacy which mitigates one-dimensional data-

base reconstruction attacks. In addition to leaking access and search

pattern, they also leak the nodes accessed when traversing the

range tree and the values of each queried range. Recently, Kamara

et al. gave constructions for schemes that support conjunctive SQL

queries with a reduced leakage profile [6, 24, 49].

One may also consider an index-based construction described

in [13] that is built on top of a multi-keyword searchable symmetric

encryption (SSE) scheme, like Cash et al. [5]. To mitigate 1D attacks

and avoid leaking information about individual columns, one can

precompute a joint index of all possible 2D queries and encrypt the

resulting index. When a 2D query is issued, only records matching

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2244

Table 1: Comparison of our attack with related ones that
assume access pattern leakage.

Queries Assumptions Leakage Attack

1D 2D Query Data- Search OR FDR ADR
range range distrib. base pattern

Kellaris+ [25] ✓ Uniform Any ✓ ✓ ✓
Lacharité+ [29] ✓ Unknown Dense ✓ ✓
Grubbs+ [19] ✓ Uniform Any ✓ ✓ ✓

Markatou+ [32] ✓ Unknown Any ✓
Markatou+ [32] ✓ Unknown Any ✓ ✓

Kornaropoulos+ [27] ✓ Unknown Any ✓ ✓

Falzon+ [13] ✓ Unknown Any ✓ ✓
Falzon+ [13] ✓ Known Any ✓

This Work ✓ Unknown Any ✓
This Work ✓ Unknown Any ✓ ✓
This Work ✓ Unknown Dense1D ✓ ✓

both dimensions will be returned and the leakage is precisely the

leakage of the underlying SSE scheme used.

1.3 Comparison with Prior and Related Work
In the following, we denote with 𝑁 the size of the domain of the

database points. We present the first order reconstruction and the

first approximate database reconstruction in 2D; our attacks only

require a strict subset of the leakage used by the 2D attacks in [13].

Previous 2D attacks require the multiset of access patterns, which

can be obtained with 𝑂 (𝑁 4
log𝑁) uniformly random queries. In

contrast, our order reconstruction attack takes as input the set of

access pattern leakage, which can be obtained with 𝑂 (𝑁 2
log𝑁)

uniformly random queries. Our approximate database reconstruc-

tion attack requires search and access pattern leakage, however,

we are able to recover information with small relative error with

as few as 4% of the possible queries. Table 1 compares our results

with previous work, where Dense1D denotes a 2D database whose

horizontal and vertical projections are each a dense 1D database.

Kellaris et al. [25] show that given a 1D database, one can recon-

struct the values of the database records from access pattern leakage

of range queries using𝑂 (𝑁 4
log𝑁) queries issued uniformly at ran-

dom. Since then, a number of works have explored the problem in

1D (e.g. [19, 26, 27, 29, 32]), and in 2D [13].

Order reconstruction was first introduced in [25], as the first

step of their FDR attack. Grubbs et al. [19] generalize the attack

to one that achieves sacrificial 𝜖-approximate order reconstruction

(𝜖-AOR); the goal of 𝜖-AOR is to recover the order of all records,

except for records that are either within 𝜖𝑁 of each other or within

𝜖𝑁 of the endpoints. Their attack achieves sacrificial 𝜖-AOR with

probability 1−𝛿 given𝑂 (𝜖−1 log 𝜖−1+𝜖−1 log𝛿−1) uniform queries.

Approximate database reconstruction from access pattern of

range queries in 1D was addressed in [19, 27, 29]. In [29], Lacharité

et al. introduce 𝜖-approximate database reconstruction (𝜖-ADR) as

the reconstruction of each record value up to 𝜖𝑁 error; they then

give an attack that achieves 𝜖-ADR with 𝑂 (𝑁 log 𝜖−1) uniform
queries. In [19], the authors further introduce sacrificial 𝜖-ADR,

whose goal is to recover all values up to and error of 𝜖𝑁 , while

“sacrificing” recovery of points within 𝜖𝑁 of the domain end points.

Concepts from statistical learning theory are applied to achieve a

scale-free attack that succeeds with 𝑂 (𝜖−2 log 𝜖−1) queries.
Kornaropoulos et al. [27] reconstruct a 1D database without

knowledge of the underlying query distribution and without all

possible queries by employing statistical estimators to approximate

the support size of the conditional distribution of search tokens

given a particular response. Their agnostic reconstruction attack

achieves reconstruction with good accuracy in a variety of settings

including and beyond the uniform query distribution.

Full database reconstruction in 2D was first described in [13]. In

this work, Falzon et al. describe the symmetries of databases in two

dimensions, prove that the set of databases compatible with a given

access pattern leakage may be exponential, and give a polynomial-

time algorithm for computing a polynomial-sized encoding of the

(potentially exponential) solution set. Their attack requires full

knowledge of the set of queries and their respective access pattern.

As such, the attack uses either (1) search and access pattern leakage

or (2) 𝑂 (𝑁 4
log𝑁) uniformly random queries where 𝑁 is the size

of the 2D domain.

There are also a number of reconstruction attacks that use only

volume pattern, i.e., the number of records returned upon each

query [18, 20, 28]. This setting is outside the scope of this paper.

2 Preliminaries
We recall standard combinatorial and geometric concepts using the

terminology and notation introduced in [13].

Basic concepts. For a positive integer 𝑁 , let [𝑁] = {1, . . . , 𝑁 }.
The domain of a two-dimensional (2D) database is denoted D =

[𝑁0] × [𝑁1] for positive integers 𝑁0 and 𝑁1. We refer to the points

on the segment from (0, 0) to (𝑁0+1, 𝑁1+1) as themain diagonal.
Given a point𝑤 ∈ D, we denote its first coordinate as𝑤0 and its

second coordinate as𝑤1, i.e.,𝑤 = (𝑤0,𝑤1). A point𝑤 dominates
point 𝑥 , denoted 𝑥 ⪯ 𝑤 , if 𝑥0 ≤ 𝑤0 and 𝑥1 ≤ 𝑤1. Similarly, 𝑤

anti-dominates 𝑥 , denoted 𝑥 ⪯𝑎 𝑤 , if𝑤0 ≤ 𝑥0 and 𝑥1 ≤ 𝑤1. The

dominance or anti-dominance is said to be strict if the above in-
equalities are strict. We say that𝑤 minimally (anti-) dominates
𝑥 if there is no point 𝑣 ≠ 𝑤, 𝑥 such that𝑤 (anti-) dominates 𝑣 and 𝑣

(anti-) dominates 𝑥 .

A 2D database, D, over a domain D with 𝑅 ≥ 1 records is an

𝑅-tuple of points in D i.e. D ∈ D𝑅
. A point of D is referred to as

a record and is associated with a unique identifier (or ID) in [𝑅]
that gives its index in the tuple. We let D[𝑗] for 𝑗 ∈ [𝑅] denote the
domain value associated with the record ID 𝑗 . When clear from

context, we may refer to records as points.

In this work, we use directed graphs (digraphs) to encode the

order relations of the records in the database. A digraph is a tuple

𝐺 = (𝑉 , 𝐸) such that 𝑉 is the vertex set and 𝐸 is the directed edge

set. For any two vertices or nodes𝑢, 𝑣 ∈ 𝑉 we denote a directed edge

from 𝑢 to 𝑣 as the pair (𝑢, 𝑣). A source vertex is a vertex with only

outgoing edges and a sink vertex is a vertex with only incoming

edges. The definitions below are illustrated in Figure 2.

Definition 2.1. The dominance graph, 𝐺 = (𝑉 , 𝐸), of a set of
points 𝑆 , is the digraph where 𝑉 = 𝑆 and (𝑎, 𝑏) ∈ 𝐸 if 𝑏 minimally

dominates 𝑎 and 𝑎, 𝑏 ∈ 𝑉 .

Definition 2.2. The anti-dominance graph, 𝐺 ′ = (𝑉 ′, 𝐸 ′), of a
set of points 𝑆 , is the digraph where 𝑉 ′ = 𝑆 and (𝑎, 𝑏) ∈ 𝐸 ′ if 𝑏
minimally anti-dominates 𝑎 and 𝑎, 𝑏 ∈ 𝑉 ′

.

Definition 2.3 ([13]). A component,𝐶 , of databaseD is a minimal

non-empty subset of D such that for any points 𝑝 ∈ 𝐶 and 𝑞 ∉ 𝐶 ,

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2245

Figure 2: The domi-
nance graph (blue) and
anti-dominance graph
(red) for a database with
8 records and compo-
nents {𝑢1}, {𝑢2, 𝑢3}, {𝑢4},
{𝑢5, 𝑢6, 𝑢7}, and {𝑢8}.

u2
u4

u1
u3

u5

u6 u7

u8

both 𝑝 and its reflection along the main diagonal either dominate 𝑞

or are dominated by 𝑞.

Range queries and leakage. A range query is defined by a pair

of domain points 𝑞 = (𝑐, 𝑑) ∈ D2
such that 𝑐 ⪯ 𝑑 . The response or

access pattern of a range query is the set of identifiers of records

with values that fall within the range of the query. The response of

a query 𝑞 = (𝑐, 𝑑) is defined to be

Resp(D, 𝑞) = { 𝑗 ∈ [𝑅] : 𝑐 ⪯ 𝐷 [𝑗] ⪯ 𝑑}. (1)

We define the responsemultiset of a database D, denotedRM(𝐷),
as the multiset of all access patterns of D:

RM(D) = {{Resp(D, 𝑞) : 𝑞 = (𝑐, 𝑑) ∈ D2, 𝑐 ⪯ 𝑑}}. (2)

The double bracket notation emphasises the multiset as distinct

queries 𝑞 and 𝑞′ may produce the same response, Resp(D, 𝑞) =

Resp(D, 𝑞′). For two multisets 𝐴 and 𝐵, we say that 𝐴 is a sub-
multiset of 𝐵 if 𝐴 is contained in 𝐵. We define the response set
of D, denoted RS(D), to be the set associated with RM(D) where
each response appears exactly once. The search pattern of a query

𝑞 = (𝑐, 𝑑) is defined to be a query-specific token SP(D, 𝑞) = 𝑡 ,

where 𝑡 ∈
[(𝑁0+1

2

) (𝑁1+1
2

)]
. We assume a one-to-one correspondence

between queries and tokens. Our order reconstruction algorithm

(Sections 4-5) takes RS(D) as input. Our approximate database

reconstruction algorithm (Sections 6–7) takes as input a submul-

tiset of RM(D) (i.e., the search and access pattern) observed by

the adversary for any number of queries drawn from an arbitrary

distribution.

Threatmodel.We study the security of encrypted database schemes

that support two-dimensional range queries and which leak the

access pattern and search pattern of each query. We consider a

passive, honest-but-curious, persistent adversary that has com-

promised the database management system or the client-server

communication channel, and can observe the leakage over an ex-

tended period of time. Our order reconstruction attack considers

an adversary that takes RS(D) as input and wishes to compute the

order of all records. Our second attack considers an adversary that

knows the search tokens and responses of some sample of queries,

as well as the order of all the records, and wishes to approximate

the domain value of each record.

Assumptions and reconstruction attacks. We explore recon-

struction under a few different assumptions. In Section 5 we assume

the adversary knows the full response set RS(D). In Section 7 we

assume the adversary knows the domain, but we make no assump-

tion about the number of queries that it may have observed or the

distribution from which queries are drawn; the adversary has no

knowledge of the distribution.

We define the order reconstruction (OR) problem as follows:

Definition 2.4. OR: Given a set RS(D) of some database D, com-

pute all pairs of dominance and anti-dominance graphs (𝐺,𝐺 ′)

such that any database D′
with record relationships defined by

(𝐺,𝐺 ′) is equivalent to D with respect to the response set, i.e.

RS(D) = RS(D′).

Computing (𝐺,𝐺 ′) is the information theoretic best that an

adversary can do without additional information (e.g. without the

multiplicities of each response, or the distribution of the data).

In Section 7, we give a method for estimating the values of the

database given only search pattern leakage. In particular, given the

order of points in D and a multiset of search token and response

pairs (where each pair corresponds to one of the observed queries),

we demonstrate how to (i) estimate the number of unique queries

that each record appears in and then (ii) use this information to

construct a system of non-linear equations that can be solved to

give approximate values of the records. We refer to this problem as

approximate database reconstruction (ADR).

2.1 Query Densities
We use the generalized notion of query densities of points and

point sets in two-dimensions presented in [13], which extends

the methods in [25] for computing the number of unique queries

whose responses contain a given set of points. By observing suffi-

ciently many query responses of uniformly random queries, one

can recover the value of a point 𝑥 by computing the proportion of

responses that the identifier of 𝑥 appears in.

Definition 2.5 ([13]). Let D = [𝑁0] × [𝑁1]. The query density
of a point 𝑥 ∈ D is defined as

𝜌𝑥 =
��{(𝑐, 𝑑) ∈ D2

: 𝑐 ⪯ 𝑥 ⪯ 𝑑}
�� .

The query density a set of points 𝑆 ⊆ D defined as

𝜌𝑆 =
��{(𝑐, 𝑑) ∈ D2

: ∀𝑥 ∈ 𝑆, 𝑐 ⪯ 𝑥 ⪯ 𝑑}
�� .

Thus, these are the number of queries that contain 𝑥 or all points

in 𝑆 , respectively.

Given a point 𝑥 = (𝑥0, 𝑥1) ∈ D, the formula for computing 𝜌𝑥 is

𝜌𝑥 = 𝑥0 · 𝑥1 · (𝑁0 + 1 − 𝑥0) · (𝑁1 + 1 − 𝑥1) . (3)

More generally, the query density 𝜌𝑆 of a set of points 𝑆 ⊆ D is

𝜌𝑆 = (min

𝑥 ∈𝑆
𝑥0) (min

𝑦∈𝑆
𝑦1) (𝑁0 + 1 −max

𝑧∈𝑆
𝑧0) (𝑁1 + 1 −max

𝑤∈𝑆
𝑤1) . (4)

3 Order and Equivalent Databases
Before developing our attacks, we present our results on the infor-

mation-theoretic limitations of order reconstruction.

3.1 Equivalent Databases
Definition 3.1. Databases D and D′

are equivalent with respect
to the response multiset if RM(D) = RM(D′) and equivalent
with respect to the response set if RS(D) = RS(D′).

As shown in [13], given some database D we can generate a

database D′
that is equivalent with respect to the response multiset

by rotating/reflecting D according to the symmetries of the square

and by independently flipping the reflectable components across

the main diagonal.

Proposition 1. [13] Let D be a two-dimensional database that
contains components 𝐶1 and 𝐶2. Let D′ be a database such that
|D′ | = |D |, which contains 𝐶1 and 𝐶 ′

2
, where each point 𝑝 ∈ 𝐶 ′

2

is the reflection of some point 𝑝 ′ ∈ 𝐶2 along the diagonal. Then

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2246

′

(a) Illustration of Definition 2.3 and Proposition 1.
𝐶1 and𝐶2 are components ofD. Flipping𝐶2 along
the diagonal yields an equivalent database with
respect to the response multi-set.

R

Q

P

L

p
p′

q
q′

(b) Illustration ofDefinition 3.2 andProposition 2.
Points 𝑝 and𝑞 are an antipodal pair. Each remain-
ing point is in 𝐿 or𝑅. Replacing 𝑝 with 𝑝′ ∈ 𝑃 and
𝑞 with 𝑞′ ∈ 𝑄 gives an equivalent database with
respect to the response set.

q′

X
2

p

X
1

X
3

q

Q

(c) Illustration of Definition 3.3 and Proposition 3.
Points𝑝 and𝑞 are a close pair. There are no points
in regions𝑋1,𝑋2 or𝑋3. Replacing𝑞 with any𝑞′ ∈
𝑄 yields an equivalent database with respect to
the response set.

Figure 3: Examples of transformations that yield equivalent databases with respect to the response set (Definition 3.1).

databases D and D′ are equivalent with respect to the response set,
i.e., RS(D) = RS(D′).

Note that if D and D′
are equivalent with respect to the response

multiset, then they are equivalent with respect to the response set.

However, the converse is not necessarily true. We show in Proposi-

tions 2 and 3 (Figure 3) that there are two additional symmetries

that produce equivalent databases with respect to the response set.

Definition 3.2. Apair of points (𝑝, 𝑞) of a databaseD is an antipo-
dal pair if for every point 𝑟 ∈ D − {𝑝, 𝑞} we have (1) 𝑞1 < 𝑟1 < 𝑝1
and (2) either 𝑟0 < min(𝑝0, 𝑞0) or 𝑟0 > max(𝑝0, 𝑞0). See Figure 3b.

Definition 3.3. A pair (𝑝, 𝑞) of points of a database D are said to

be a close pair if𝑞minimally dominates 𝑝 , and there exists no point

𝑟 ∈ D − {𝑝, 𝑞} such that 𝑟 anti-dominates 𝑝 or 𝑟 is anti-dominated

by 𝑞 or 𝑟 is between 𝑝 and 𝑞. See Figure 3c.

The following proposition, illustrated in Figure 3b, shows that

one cannot infer the horizontal ordering of an antipodal pair from

the response set.

Proposition 2. Let D be a database from domainD that contains
an antipodal pair (𝑝, 𝑞). Let 𝑉 be the widest vertical strip of points of
D that contains 𝑝 and𝑞, and let 𝑃 and𝑄 be the tallest horizontal strips
of𝑉 containing 𝑝 and 𝑞, respectively, but no other point of D. Let D′ be
the database obtained from D by replacing 𝑝 with another point, 𝑝 ′, of
𝑃 and 𝑞 with another point, 𝑞′, of𝑄 . We have that databases D and D′

are equivalent with respect to the response set, i.e., RS(D) = RS(D′).
[Proof in Appendix C]

By Proposition 2, the two points of the antipodal pair (𝑝, 𝑞) of
D and of the corresponding antipodal pair (𝑝 ′, 𝑞′) of D′

can be

ordered, reverse ordered, or collinear in the horizontal dimension

and these three orderings cannot be distinguished using RS(D).
Proposition 3. Let D be a database from domain D that has a

close pair (𝑝, 𝑞). Let D′ be the database obtained fromD by replacing𝑞
with any point 𝑞′ such that 𝑞′

0
= 𝑞0 and 𝑝1 ≤ 𝑞′

1
≤ 𝑞1. Then D and D′

are equivalent with respect to the response set, i.e., RS(D) = RS(D′).
[Proof in Appendix C]

Definition 3.4. Let D be a database and let 𝐺 and 𝐺 ′
be the dom-

inance and anti-dominance graphs of D, respectively. We define

Eo (D) as the set of all possible point orderings of databases equiva-
lent to D with respect to response set, RS(D).

Combining Propositions 1, 2 and 3, we characterize the information-

theoretic limitations of order reconstruction.

Figure 4: Example of a
dominance graph and
its associated canoni-
cal antichain partition
comprising antichains
𝐴0 = {𝑠}, 𝐴1 = {𝑢1, · · ·𝑢6},
and 𝐴2 = {𝑣1, · · · 𝑣4}.

Theorem 3.5. Let D be a two-dimensional database. The set of
point orderings Eo (D) can be obtained from the dominance graph 𝐺 ,
the anti-dominance graph𝐺 ′, the antipodal pair (if it exists), and the
set of close pairs of D by means of the following transformations:

(1) Flipping the direction of 𝐺 and/or a subset of components of 𝐺 ′

according to Proposition 1.
(2) If D contains an antipodal pair, add or remove one or two edges

from𝐺 or𝐺 ′ to make the pair collinear or switch their relationship
from strict dominance to strict anti-dominance or vice versa.

(3) For each close pair in D, add or remove one or two edges from 𝐺

or 𝐺 ′ to make them collinear or put them in a strict dominance
relationship.

We prove Theorem 3.5 in Section 4.1. The equivalent configura-

tions of Propositions 2 and 3 arise only with respect to the response

set. The multiplicity information from the response multiset pro-

vided by the search pattern resolves them. Indeed, Theorem 3.5

adds transformations (2) and (3) to transformation (1) given in [13].

3.2 Chains and Antichains
Our order reconstruction algorithm uses the concepts of chains

and antichains of the dominance and anti-dominance relations for

points in the plane [14, 46]. A set of points 𝑆 ⊆ D is a chain if any

two points 𝑥,𝑤 ∈ 𝑆 are in a dominance relationship i.e. 𝑥 ⪯ 𝑤 or

𝑤 ⪯ 𝑥 . A subset of points 𝐴 ⊆ D is an antichain if for any two

points 𝑥,𝑤 ∈ 𝐴 neither 𝑥 ⪯ 𝑤 nor 𝑤 ⪯ 𝑥 . Let D ⊆ D be a set of

points. The height of a point 𝑥 ∈ D is the length of the longest

chain in D with 𝑥 as the maximal element. Note that two points of

the same height cannot have a dominance relation. Thus, the set

of all points in D with the same height yields a partition A of D
into antichains, namely the canonical antichain partition. We

denote the canonical antichain partition by (𝐴0, 𝐴1, . . . , 𝐴𝐿) where
𝐴𝑖 is the set of points at height 𝑖 .

Let D be a database and let (𝐺,𝐺 ′) be the dominance and anti-

dominance graphs of D. Now note that the paths in the dominance

graph correspond to chains in D. Formally, if (𝑢1, 𝑢2, . . . , 𝑢ℓ) is a

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2247

path of record IDs in 𝐺 , then D[𝑢1] ⪯ D[𝑢2] ⪯ · · · ⪯ D[𝑢ℓ] and
{D[𝑢1],D[𝑢2], . . . ,D[𝑢ℓ]} forms a chain in D. By definition the

edges of𝐺 represent the minimal dominance relations of the points

in D and thus determining the length of a longest possible path

in 𝐺 from a source to 𝑢 ∈ [𝑅] is equivalent to determining the

height of point D[𝑢] in the database. This gives us a nice way

of partitioning the IDs such that the partition corresponds to the

canonical antichain partition. Formally, if 𝑠 is a source of 𝐺 then

D[𝑠] has height 0. And if 𝑆𝑖 ⊆ [𝑅] is the set of IDs in𝐺 that have a

maximum distance of 𝑖 from any sink, then the canonical antichain

partition of D is given by 𝐴𝑖 = {D[𝑎] : 𝑎 ∈ 𝑆𝑖 }.
For an example, see Figure 4. Since 𝐺 is acyclic we can compute

these longest paths efficiently. For convenience we may use 𝐴𝑖

to instead refer to the IDs of points within each partition of the

canonical antichain.

These observations are crucial in the design of our OR algorithm.

E.g., we construct the dominance graph starting at the IDs of points

with height 0. We then compute the partition on IDs that corre-

spond to the canonical antichain partition and use this partition to

construct the anti-dominance graph.

4 Overview of Order Reconstruction
A high-level intuitive explanation for our order reconstruction al-

gorithm is schematically illustrated in Figure 5, where we show a

database that has distinct extreme points left, right, top and bottom.

We assume, without loss of generality, that left ⪯ right. The two
parts of the figure distinguish the cases where top is to the left or

right of bottom, respectively. By symmetry, these two cases cover

all the possible configurations of the extreme points. For simplicity,

we assume that none of the remaining points are horizontally or

vertically aligned with each other or the extreme points. Thus, only

the four extreme points are on the boundary of the rectangle occu-

pied by the database points. The OR algorithm presented in the next

section will remove these simplifying assumptions and reconstruct

an arbitrary database. A first building block of our OR algorithm

finds such extreme points from the response set. We leverage an

algorithm from [13] to find these extreme points, however our

techniques diverge considerably from [13] after this. Whereas they

solve a system of degree four polynomials with full knowledge of

RM(D), our OR algorithm determines the relationships between

pairs of records using only set containment observed in RS(D).
Partition of the Database into Regions. By drawing horizon-

tal and vertical lines through the extreme points, we partition the

database points into nine regions labeled XY for X ∈ {T,M,B} and
Y ∈ {L,M,R}, where T, B, L, R, and M stand for top, bottom, left,

right, and middle, respectively. Note that some of these regions

may be empty. We can compute the points in each region from

the response set by finding minimal responses that contain certain

pairs and triplets of extreme points and performing intersections

and differences of such responses with each other and the entire

database. We show how to compute the rows and columns, from

which a region can be computed by intersecting its row with its

column. The middle row and column are the minimal response

containing left and bottom and the minimal response containing

top and bottom, respectively. The other rows and columns are ob-

tained by computing the minimal response containing the triplet

(a) top to the left of bottom (b) top to the right of bottom
Figure 5: Partition of the database points into nine regions
induced by the four extreme points.

of extreme points opposite to the column and subtracting this re-

sponse from the database. For example, the left column is obtained

by subtracting from the database the minimal response containing

top, right, and bottom.

(Anti-)Dominance with a Corner. Consider a subset 𝑆 of the

database containing a dominance corner, 𝑠 , defined as a point that

dominates or is dominated by all other points of 𝑆 . For example,

point left is a dominance corner for the points in region ML in

Figure 5a. Another building block of our algorithm is a method

that given 𝑆 and 𝑠 , computes all pairs of points of 𝑆 that have a

dominance relation. By symmetry, the same methods compute the

anti-dominance relation pairs for a subset of points that admits

a similarly defined anti-dominance corner. Let 𝑠 be a dominance

corner for 𝑆 and assume 𝑠 is dominated by all the other points.

The method considers for each point 𝑣 of 𝑆 , the smallest response

containing points 𝑠 and 𝑣 . The points contained in this response

are the points of 𝑆 dominated by 𝑣 . For example, in the point set

of Figure 4, we have that point 𝑠 is a dominance corner. Also, the

smallest response containing 𝑠 and 𝑣3 is {𝑠,𝑢3, 𝑢4, 𝑣3}, which implies

that the points dominated by 𝑣3 are 𝑠 , 𝑢3 and 𝑢4.

Points in Different Rows and Columns. Consider two points,

𝑝 , and 𝑞. For some placement of these points into regions, namely

when they are in regions in different rows and columns, we can

immediately decide their horizontal and vertical order and thus

whether they are in a dominance or anti-dominance relation. For

example, if 𝑝 is in BL and 𝑞 is inMM,MR, TM, or TR, then we have

that 𝑞 is above and to the right of 𝑝 and thus dominates 𝑝 . Also, if 𝑝

is in BM and 𝑞 isML or TL, then we have that 𝑞 is above and to the

left of 𝑝 and thus 𝑞 anti-dominates 𝑝 . Similar considerations hold

for other placements of 𝑝 and 𝑞 in different rows and columns.

Points in Different Regions in Same Row or Column. Con-
sider now the case when 𝑝 and 𝑞 are in different regions that share

the same row or column. In this case, we know one of the horizontal

or vertical ordering of the points, but not the other. Let 𝑝 be in TL
and 𝑞 be in TR. We have that 𝑝 is to the left of 𝑞. We can use our

building block method applied to the points in the top row and

their anti-dominance corner right to determine whether 𝑝 and 𝑞

are in anti-dominance relation. If they are not, given that 𝑝 is to the

left of 𝑞, we conclude that 𝑞 dominates 𝑝 . The same reasoning holds

when 𝑝 is in TL and 𝑞 is in TM and, more generally, by symmetry,

for 𝑝 and 𝑞 in contiguous regions of the same row or column.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2248

Points in Same Region. We now turn to the case when 𝑝 and

𝑞 are in the same region. Here, we need to take into account the

configurations of the extreme points. We distinguish the cases when

top is to the left bottom (Figure 5a) and top is to the right of bottom
(Figure 5b). It is worth noting that we can distinguish these two

cases from the response set only if there is at least a point in the

middle column. Otherwise, top and bottom are an antipodal pair

(Definition 3.2 and Proposition 2).

In the case of Figure 5a, each region is included in a group of

regions that has a dominance corner and another group of regions

that has an anti-dominance corner. For example, suppose 𝑝 and 𝑞

are in TL, TM,ML, orMM. We have that left is a dominance corner

for the top two rows and bottom in an anti-dominance corner for

the left two rows. Applying our building block method to these two

groups of regions, we determine whether 𝑝 and 𝑞 are in dominance

or anti-dominance relation. In the case of Figure 5a, we can use the

same approach for all regions except MM.

To deal with the remaining case of 𝑝 and 𝑞 within region MM
in the configuration of Figure 5b, we observe that using dominance

corner top or bottom, we can determine if 𝑝 and 𝑞 are in dominance

relation. If so, we are done, else, we find the extreme points ofMM
and apply the order reconstruction algorithm recursively to the

points within this region.

4.1 Proof of Theorem 3.5
Now that we have introduced the notion of partitioning the domain,

we present the proof for Theorem 3.5 below.

Proof. Let D be a database and let left, right, top, and bottom
be its four extreme points. Without loss of generality, these points

must take one of the two configurations pictured in Figure 5. Note,

any point’s relative order can be determined if it is in a dominance

relation with one point and in an anti-dominance relation with

another point. If a point is not in such a relation, then we argue

that the three transformations yield all databases equivalent to D
with respect to the response set.

Case 1: If top and bottom are antipodal, we have the configuration

of Figure 5a or Figure 5b with an empty middle column and the

ordering of all pairs of points is determined with the exception of

the antipodal pair (Transformation 2).

Case 2: If top and bottom are not antipodal, we have two subcases.

Case 2a: If top anti-dominates bottom, we have the configuration

of Figure 5a where the ordering of all pairs of points is determined.

Case 2b: Else, top dominates bottom and we have the configuration

of Figure 5b, where the ordering of all pairs of points is determined

except for pairs in MM. If MM = ∅ or has a single point, we are

done. Else, let 𝐶 be the subset of points of MM are not in anti-

dominance relation with a point of D not in MM. We have that all

the remaining points of MM have their ordering determined. Also,

𝐶 comprises one or more components and/or close pairs whose

ordering can be changed by means of Transformations 1 and 3.

Now, let us show that there are no other possible transformations

that change the order of some pair of points 𝑎, 𝑏 in 𝐶 , while leav-

ing RS(D) the same. If 𝑏 minimally dominates 𝑎, there exists no

response in RS(D) that contains right and 𝑎 without 𝑏. Any such

transformation would result in one of the following changes: (i) 𝑎

dominates 𝑏, (ii) 𝑎 anti-dominates 𝑏, (iii) 𝑏 anti-dominates 𝑎 and

(iv) 𝑎 and 𝑏 are collinear. If (i), (ii) or (iii), then there would exist a

response in RS(D) that contains right and 𝑎, but not 𝑏, which would
result in a different response set. Thus, the transformation would

make 𝑎 and 𝑏 be collinear. This is possible only if the corresponding

sets 𝑋1, 𝑋2 and 𝑋3 shown in Figure 3c are empty. As 𝑏 minimally

dominates 𝑎,𝑋3 must be empty. Suppose there is some point 𝑐 ∈ 𝑋1,

then there is a response that contains 𝑎 and 𝑐 without 𝑏 and a re-

sponse that contains 𝑏 and 𝑐 without 𝑎. If 𝑎 and 𝑏 were collinear,

one of those responses becomes impossible, modifying the response

set. A similar argument can be made about 𝑋2. We conclude 𝑎 and

𝑏 are a close pair and that we are applying Transformation 3.

Alternatively, if 𝑏 minimally strictly anti-dominates 𝑎, there ex-

ists a response 𝑟1 that contains right and 𝑎 without 𝑏 and a response

𝑟2 that contains right and 𝑏 without 𝑎. The transformations would

result in one of the following: (i) 𝑎 dominates 𝑏, (ii) 𝑏 dominates 𝑎,

(iii) 𝑎 anti-dominates 𝑏 and (iv) 𝑎 and 𝑏 are collinear. In (i), (ii), or

(iv) one of 𝑟1 or 𝑟2 would not exist, resulting in a different response

set. What is left is case (iii), which implies that the anti-dominance

relationship is flipped by applying Transformation 1. □

5 Order Reconstruction
We show that the adversary can reconstruct the order of all records

in the database (up to equivalent orders) by using the response set.

The order reconstruction (OR) algorithm has the following steps:

(1) Find the extreme points of the database. (Algorithm 9)

(2) Find the first antichain of the database, which contains all points

that do not dominate any point and generate the dominance

graph of the database. (Algorithm 1)

(3) Find all antichains in the dominance graph. (Algorithm 2)

(4) Build the anti-dominance graph from antichains. (Algorithm 3)

(5) Use the dominance and anti-dominance graphs to find any

antipodal pairs (Proposition 2), close pairs (Proposition 3) and

reflectable components. (Proposition 1). (Algorithm 4)

Note that this attack achieves FDR when the horizontal and

vertical projections of the points are dense.

5.1 Preliminaries
Our OR attack requires computing the IDs of the points dominating

a point in antichain 𝐴0. Algorithm 8 (DominanceID), shown in

Appendix A, takes as input the response set RS(D) of a database
D and the ID 𝑎 of some point with height 0, and outputs the set of

identifiers of points that dominate D[𝑎].
5.2 Find Extreme Points
The first step is to identify at most four identifiers of points with

extreme coordinate values. Specifically, we wish to find identifiers

of points left, right, top and bottom such that for all 𝑝 ∈ D the

following hold: (1) left0 ≤ 𝑝0 ≤ right
0
and bottom1 ≤ 𝑝1 ≤ top

1
,

and (2) 𝑝 ⪯̸ left, bottom and top, right ⪯̸ 𝑝 . Note that since no

points in D are dominated by left and bottom, then their height is

0 and are thus a subset of 𝐴0 in the canonical antichain partition of

D. These points give a starting point for computing the rest of 𝐴0.

We recover these extremal points by calling Algorithm 7.

Our approach for finding such a subset of identifiers is as follows.

Let 𝐿 and 𝑆1 be the first and second largest responses in RS(D),
respectively. Then 𝐸1 = 𝐿−𝑆1 must correspond to the IDs of points

that are extreme in some coordinate. To find the IDs of points

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2249

that are extreme in some other coordinate, find the second largest

response 𝑆2 that contains 𝐸1, and then compute 𝐸2 = 𝐿 − 𝑆2. By

extending this process, we find all points with extremal coordinates.

It remains to find the correct point within each set 𝐸𝑖 . Suppose 𝐸1
and 𝐸2 are the left and bottom edges, respectively. By finding 𝑎, 𝑏 ∈
[𝑅] such that the smallest response containing 𝑎 and 𝑏 contains no

other edge points, then D[𝑎] and D[𝑏] must not be dominating any

other points in D. Hence left = D[𝑎] and bottom = D[𝑏]. Similarly

for the identifiers of top and right.
Without loss of generality, we assume that right dominates left.

Algorithm 9, shown in Appendix B, is inspired by [13].

Lemma 5.1. Let D be a database with 𝑅 records and let RS(D) be
its response set. Algorithm 9 (FindExtremePairs) returns all configu-
rations of extreme points (left, right, top, bottom) such that no points
are dominated by left and bottom, and no points dominate right and
top in 𝑂 (𝑅2 |RS(D) |) time. [Proof in Appendix C]

5.3 Generate Dominance Graph
This step takes as input the response set RS(D) and some configu-

ration config given by running Algorithm 9 on RS(D), and outputs

a dominance graph 𝐺 of D. We first compute all IDs of points with

height 0. These are the sinks of 𝐺 . Let left, right, and bottom be

given by config. All points not dominated by left and bottom must

be contained in the minimal query containing them.

Then for each 𝑎 ∈ 𝐴0 we build a subgraph of the dominance

graph on 𝑎 and all IDs that dominate 𝑎. We use Algorithm 8, de-

scribed in Appendix A, to compute this set of IDs. We initialize

subgraph 𝐺𝑎 = {𝑎} and then extend the graph by finding the next

smallest response resp containing 𝑎, that also contains some ID

𝑣 not yet added to the graph. Since resp is minimal, then 𝑣 must

dominate everything in the response. Moreover, 𝑣 must minimally

dominate all IDs that are sinks in the current𝐺𝑎 and are contained

in resp. We add (𝑡, 𝑣) to 𝐺𝑎 for all sinks 𝑡 of 𝐺𝑎 contained in resp.
Once graphs 𝐺𝑎 for 𝑎 ∈ 𝐴0 have been computed, we take their

union, 𝐺 = ∪𝑎𝐺𝑎 , as the dominance graph and return 𝐺 and 𝐴0.

Lemma 5.2. Let D be a database with 𝑅 records, RS(D) be its re-
sponse set, and config the correct configuration output by Algorithm 9
on RS(D). Given RS(D) and config, Algorithm 1 (DomGraph) re-
turns the dominance graph of the points in D in 𝑂 (𝑅3 |RS(D) |) time.
[Proof in Appendix C]

5.4 Construct Antichains
Given𝐴0, we now compute the entire canonical antichain partition

of D. We explain how to find the partition A = (𝐴0, . . . , 𝐴𝐿) such
that 𝐿 is the maximum height of any element in D. Computing each

𝐴𝑖 is equivalent to finding the set of elements whose maximum

length path in 𝐺 from any 𝑎 ∈ 𝐴0 has length 𝑖 . Thus, for each

𝑝 ∈ 𝐺 we compute the longest path in 𝐺 from any 𝑎 ∈ 𝐴0 to 𝑝 and

then add 𝑝 to the correct partition in A. Lastly, order the elements

in each antichain 𝐴 ∈ A such that, without loss of generality,

for any pair of ordered elements 𝑐 and 𝑐 ′, 𝑐 ′ antidominates 𝑐 i.e.

𝑐 ⪯𝑎 𝑐 ′. If |𝐴| ≤ 2 we are done. Else we compute all responses

that contain exactly two elements in 𝐴. If such a response exists

for a pair 𝑐, 𝑐 ′ ∈ 𝐴 then we can infer that there exists no 𝑐 ′′ ∈ 𝐴

such that 𝑐 ⪯𝑎 𝑐 ′′ ⪯𝑎 𝑐 ′. Thus we may use these responses to

determine the ordering of the elements in 𝐴 such that any element

must anti-dominate all previous elements in the ordering.

Algorithm 1: DomGraph(RS(D), config)
Input: Response set RS(D) of database D; a dictionary config mapping

left, right, top, bottom to IDs.

1: // Find antichain-0. We assume right dominates left.

2: Let small be the smallest response containing left and bottom.

3: Let 𝐴0 = small
4: for 𝑝 ∈ small do
5: Let 𝑆 be the smallest response that contains right and 𝑝 .
6: 𝑄 = (𝑆 ∩ small) − {𝑝 }
7: 𝐴0 = 𝐴0 −𝑄

8: // Find dominance graph.

9: Let𝐺 be an empty graph

10: for each 𝑎 ∈ 𝐴0 do
11: 𝐺𝑎 = (𝑉 , 𝐸) such that𝑉𝑎 = {𝑎} and 𝐸𝑎 = ∅.
12: 𝑆 = DominanceID(𝑎, top, left, right,RS(D))
13: Let 𝑅𝑆 ⊆ RS(D) comprise the responses of size at least 2 that

contain 𝑎 and only other IDs in 𝑆 .

14: for resp ∈ 𝑅𝑆 by increasing size do
15: if ∃𝑣 ∈ resp such that 𝑣 ∉ 𝐺𝑎 then
16: Add vertex 𝑣 to𝐺𝑎

17: for each 𝑡 of resp such that 𝑡 is a sink of subgraph of𝐺𝑎 that

contains only points in resp do
18: Add edge (𝑡, 𝑣) to𝐺𝑎 .

19: 𝐺 = ∪𝑎∈𝐴0
𝐺𝑎 , and remove any transitive edges

20: return𝐺 , 𝐴0

Lemma 5.3. Let D be a database and RS(D) be its response set.
Given RS(D), a dominance graph𝐺 of D, and the minimal antichain
𝐴0, Algorithm 2 (FindAntichains) returns a dictionary Antichains
such that Antichains[𝑖] contains an ordered list of all IDs at height 𝑖
in 𝑂 (𝑅2 |RS(D) |) time. [Proof in Appendix C]

Algorithm 2: FindAntichains(RS(D),𝐺,𝐴0)
1: // Find antichains.

2: (𝑉 , 𝐸) = 𝐺 , Antichains = {}, Antichains[0] = 𝐴0

3: Compute longest paths∈ 𝐺 from all 𝑎 ∈ 𝐴0 to all points in D.
4: 𝐿 = 0

5: for each 𝑝 ∈ 𝑉 do
6: Let ℓ be the length of the longest path to 𝑝 from any 𝑎 ∈ 𝐴0.

7: Add 𝑝 to Antichains[ℓ]
8: 𝐿 = max(𝐿, ℓ)
9: // Order the points of Antichains[𝑖].
10: for 𝑖 = 0, · · · , 𝐿 do
11: if |Antichains[𝑖] | > 3 then
12: Let 𝑆 be all responses in RS(D) that contain exactly two elements

of Antichains[𝑖] (and perhaps other points)

13: Remove all 𝑝 ∉ Antichains[𝑖] from 𝑆 and make 𝑆 a set.

14: Order Antichains[𝑖] such that pairs of consecutive points are

responses in 𝑆 .

15: return Antichains

5.5 Generate Anti-Dominance Graph
The next step is to take the response set RS(D), the dominance

graph𝐺 , and the canonical antichain partition Antichains and con-

struct the corresponding anti-dominance graph. There are three

major steps that we must take: (1) fix the antichain orientations so

that they are lined up correctly, (2) add any edges between IDs of

different antichains that are in an anti-dominance relationship, and

(3) identify colinearities.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2250

First we iterate through Antichains; At iteration 𝑖 , we look at

Antichains[𝑗] for all 𝑗 < 𝑖 until we find an edge (𝑐1, 𝑐2) in 𝐺 such

that 𝑐1 ∈ Antichains[𝑗] and 𝑐2 ∈ Antichains[𝑖]. If there is another
edge (𝑐 ′

1
, 𝑐 ′
2
) in 𝐺 with 𝑐 ′

1
∈ Antichains[𝑗] and 𝑐 ′

2
∈ Antichains[𝑖],

then we check if the edges in the antichains 𝑖 and 𝑗 are consistent.

E.g, if the orderings are (𝑐1, 𝑐 ′
1
) and (𝑐 ′

2
, 𝑐2) in Antichains[𝑗] and

Antichains[𝑖], respectively, then we flip Antichains[𝑖].
Once the chains are fixed, we add edges for anti-dominance re-

lationships. We iterate through Antichains[𝑖] and Antichains[𝑗]
for 𝑖 < 𝑗 and look at each pair of elements 𝑎𝑖 , 𝑎 𝑗 such that 𝑎𝑖 ∈
Antichains[𝑖] and 𝑎 𝑗 ∈ Antichains[𝑗]. For each 𝑎𝑖 and 𝑎 𝑗 we com-

pute all their successors and all predecessors in 𝐺 . If there exists

a path from some successor of 𝑎 𝑗 to some predecessor of 𝑎𝑖 , then

we add (𝑎 𝑗 , 𝑎𝑖) to 𝐺 ′
. Similarly, if there exists a path from some

predecessor of 𝑎 𝑗 to some successor of 𝑎𝑖 , we add (𝑎𝑖 , 𝑎 𝑗) to 𝐺 ′
.

The last thing that remains is to identify colinearities. For each

edge (𝑞, 𝑝) in𝐺 ′
find the smallest response 𝑆 containing 𝑞 and 𝑝 . If

there exists some 𝑘 ∈ 𝑆 such that 𝑘 and 𝑝 are not connected in 𝐺 ′
,

then they must be colinear and so we add (𝑘, 𝑝) to𝐺 ′
. We similarly

check if there exists a colinearity between 𝑘 and 𝑞 and add those

edges to𝐺 ′
. The final step is to remove all transitive edges in𝐺 ′

(if

they exist) to keep only minimal anti-dominance relationship and

return the anti-dominance graph 𝐺 ′
.

Lemma 5.4. Let D be a database and RS(D) be its response set.
Given RS(D), the dominance graph 𝐺 of D, and the ordered an-
tichains of D, Algorithm 3 returns the anti-dominance graph of D in
𝑂 (𝑅3 |RS(D) |). [Proof in Appendix C]

5.6 Order Reconstruction
Wehave already given algorithms for computing the extreme points,

the dominance graph, the antichains, and the anti-dominance graph.

We now put these pieces together to achieve OR of a database D
given its response set RS(D). Algorithm 4 performs OR by taking

the following steps. First it runs Algorithm 9 (FindExtremePairs) to
compute all candidate configurations of the extreme points. There

is a constant number of such configurations and at least one of them

corresponds to a correct arrangement of the extreme points in D
(up to rotation/reflection). For each candidate configuration, it then

computes the dominance graph using Algorithm 1 (DomGraph)
and the anti-dominance graph using Algorithm 3 (AntiDomGraph).
Incorrect configurations result in graphs that are either of an in-

correct form or result in a pair of dominance and anti-dominance

graphs (𝐺,𝐺 ′) such that databases with orders described by (𝐺,𝐺 ′)
are not compatible with RS(D). Algorithm 4 continues to iterate

through the configurations until a correct pair of graphs (𝐺,𝐺 ′) is
found and returned. Given a response set RS(D) of some database

D as input, Algorithm 4 (OrderReconstruction) is guaranteed to

terminate and output a correct graph pair.

Theorem 5.5. Given the response set RS(D) of a 2D database D
with 𝑅 records, Algorithm 4 (OrderReconstruction) returns an𝑂 (𝑅)-
space representation of the set Eo (D) of all possible orderings of the
points of databases equivalent to D with respect to the response set.
The algorithm runs in time 𝑂 (𝑅3 |RS(D) |), which is 𝑂 (𝑅7).

The proof of Theorem 5.5 can be found in the Appendix.

5.7 Experiments
In the previous subsections, we discussed the limitations of OR

and described an algorithm that succeeds at OR when given the

response set of a database. We now support our theoretical results

with experimental results. We have deployed our OR attack on

three real-world databases (Table 2): California, Spitz and HCUP.

The California Road Network dataset [31] comprises 21, 047 road

network intersections indexed by longitude and latitude. Our Cali-
fornia dataset is a random sample of 1000 points with coordinates

truncated to one decimal place and scaled by a factor of 10. The

resulting domain is [102] × [102]. We generated the response set

for this dataset and then ran our OR attack (Algorithm 4) on it.

In Figure 1a, we depict our resulting reconstruction. Although, in

theory, we only recover the relative orders of all the points, the

actual reconstruction leaks additional information about the overall

“shape” of the data. For our reconstruction, after finding the order

of the points, each point is assigned coordinates corresponding

Algorithm 3: AntiDomGraph(RS(D),𝐺,Antichains)
1: Initialize empty graph𝐺′

2: // Fix chain orientation

3: for 𝑖 ∈ [1, |Antichains |] do
4: Add an edge in𝐺′

between consecutive points in Antichains[𝑖 − 1]
5: Find (𝑐1, 𝑐2) ∈ 𝐺 , where 𝑐1 is the first point in Antichains[𝑘], 𝑘 < 𝑖

in an edge with a point from Antichains[𝑖]. If there are multiple

options for 𝑐2, pick the smallest one in order.

6: if ∃(𝑐′
1
, 𝑐′

2
) ∈ 𝐺 , for a point 𝑐′

1
∈ Antichains[𝑘], 𝑘 < 𝑖 , which is

after 𝑐1 in order, and 𝑐′
2
∈ Antichains[𝑖], which is before 𝑐2 in order,

and there is no path from 𝑐′
1
to 𝑐2 in𝐺 then

7: Flip the order of Antichains[𝑖]
8: Add an edge in𝐺′

between consecutive points in the last antichain

9: // All chains are fixed; Now add edges between them.

10: for 𝐴𝑖 = Antichains[𝑖] and 𝐴𝑗 = Antichains[𝑗], such that

𝑖, 𝑗 ∈ [|Antichains |] and 𝑖 < 𝑗 do
11: for 𝑎𝑖 ∈ 𝐴𝑖 and 𝑎 𝑗 ∈ 𝐴𝑗 do
12: if 𝑎𝑖 and 𝑎 𝑗 not connected in𝐺 then
13: Find successors of 𝑎 𝑗 , 𝑆 𝑗 ⊆ 𝐴𝑗 , and all predecessors of 𝑎 𝑗 ,

𝑃 𝑗 ⊆ 𝐴𝑗 . Add 𝑎 𝑗 to 𝑆 𝑗 , 𝑃 𝑗 .

14: Find successors of 𝑎𝑖 , 𝑆𝑖 ⊆ 𝐴𝑖 , and all predecessors of 𝑎𝑖 ,

𝑃𝑖 ⊆ 𝐴𝑖 . Add 𝑎𝑖 to 𝑆𝑖 , 𝑃𝑖 .

15: if ∃ path from 𝑝 to 𝑞 in𝐺 , s.t. 𝑝 ∈ 𝑆 𝑗 , 𝑞 ∈ 𝑃𝑖 then
16: Add edge (𝑎 𝑗 , 𝑎𝑖) to𝐺′

17: else if ∃ path from 𝑝 to 𝑎 𝑗 in𝐺 , s.t. 𝑝 ∈ 𝑃𝑖 then
18: Add edge (𝑎 𝑗 , 𝑎𝑖) to𝐺′

19: else if ∃ path from 𝑝 to 𝑞 in𝐺 , s.t. 𝑝 ∈ 𝑃 𝑗 , 𝑞 ∈ 𝑆𝑖 then
20: Add edge (𝑎𝑖 , 𝑎 𝑗) to𝐺′

21: // Find any collinearities.

22: // The pseudocode for Boxes can be found in the Appendix.

23: Let 𝐸 be an empty list.

24: for (𝑞, 𝑝) ∈ 𝐺′ do
25: 𝑃𝑞,𝑝 , 𝑆𝑝,𝑞, 𝑃𝑝,𝑞 = Boxes(𝑝,𝑞)
26: Let 𝑆 = 𝑃𝑞,𝑝 ∪ 𝑆𝑝,𝑞 ∪ 𝑃𝑝,𝑞

27: if ∃𝑘 ∈ 𝑆 , where there is no path from 𝑘 to 𝑝 in𝐺′ then
28: Add an appropriate edge between 𝑘 and 𝑝 in𝐺′

29: if ∃𝑘 ∈ 𝑆 , where there is no path from 𝑘 to 𝑞 in 𝐸 then
30: Add an appropriate edge between 𝑘 and 𝑞 in 𝐸

31: Add all edges in 𝐸 to𝐺′

32: Remove transitive edges from𝐺′

33: Return𝐺′

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2251

Algorithm 4: OrderReconstruction(RS(D))
1: PossibleConfigs = FindExtremePairs(RS(D))
2: for config ∈ PossibleConfigs do
3: 𝐺,𝐴0 = DomGraph(RS(D), config)
4: 𝐺′ = AntiDomGraph(RS(D),𝐺,Antichains(RS(D),𝐺,𝐴0))
5: Let closePairs and antipodalPairs be empty lists.

6: Find the smallest response that contains top and bottom. If it

contains no other points, then add (top, bottom) to antipodalPairs.
7: Find the smallest response that contains left and right. If it contains

no other points, then add (left, right) to antipodalPairs.
8: for each edge (𝑏, 𝑎) ∈ 𝐺 do
9: if (𝑏, 𝑎) satisfy Definition 3.3 then
10: Add (𝑏, 𝑎) to closePairs
11: if response set of points with orders (𝐺,𝐺′) is RS(D) then
12: Return (𝐺,𝐺′, antipodalPairs, closePairs)

Figure 6: Dominance (right) and anti-dominance (left)
graphs of the (top) California and (bottom) Spitz datasets.

to its index in each dimension’s ordering. The figure shows each

antichain in a different color, illustrating the height increase, as well

as an 𝛼-shape [11] of the point-set, illustrating the overall shape.

Malte Spitz is a German politician who published his phone

location between 8/31/2009 and 2/21/2010 [43]. Our Spitz dataset
comprises longitude and latitude information from the first day,

truncating it to one decimal place, and scaling it by a factor of 10.

We also ran our order reconstruction attack on the Healthcare

Cost and Utilization Project (HCUP) Nationwide Inpatient Sam-
ple (NIS) 2008 and 2009 medical datasets [1], but we are unable
to share images of the reconstructions, per the HCUP data usage

agreement. The HCUP dataset has been previously used in other

reconstruction attacks [13, 28, 29]. The reconstructed dominance

graph and anti-dominance graph of the California and Spitz datasets

are shown in Figure 6.

Order reconstruction in two-dimensions is significantly more

enlightening than in one-dimension. We conjectured that the geom-

etry of the data is more observable when data is more dense in one

or both of the domains. Our results from the California dataset sup-

port this: we can clearly see that this location data comes from the

state of California. In the Spitz case, we can still recover the shape

of the dataset and see that it is a deeply diagonal database with a

number of collinearities and reflectable components (Figure 6).

We further note that to compute the correct order from the set of

possible equivalent orders, one can extend the symmetry breaking

method from [13] by using auxiliary information about the database,

such as known values of some records or statistical information.

6 Estimating the Query Density Functions

Recall that the query density, 𝜌𝑆 , of a set of records 𝑆 corresponds

to the number of unique range queries that contain all records in 𝑆 .

One of the challenges of reconstructing a database D with partial

knowledge of the search pattern, is that the adversary can no longer

compute the exact 𝜌 values by constructing RM(D). Thus, the two-
dimensional FDR attack [13] no longer applies. To reconstruct with

missing queries, we draw inspiration from [27] and use statistical

estimators to estimate the 𝜌 values.

In Section 7 we show how these 𝜌 estimates can be used to con-

struct a system of non-linear equations whose solution corresponds

to an approximate reconstruction of the target database.

Formally, let D be a database of 𝑅 records and let𝑀 = {{(𝑡1, 𝐴1),
. . . , (𝑡𝑚, 𝐴𝑚) : 𝐴𝑖 ∈ RS(D)}} be a sample (i.e. multiset) of𝑚 token-

response pairs that are leaked when queries are issued according

to an arbitrary distribution. Let 𝐿 ⊆ 𝑀 be a subsample of𝑀 of size

𝑛. Given a sample (multiset)𝑀 of𝑚 token-response pairs, we show

how one may compute the appropriate submultisets 𝐿 ⊆ 𝑀 that

correspond to the 𝜌 functions of interest. Each of these submultisets

is used to approximate the value of its respective 𝜌 value.

6.1 Non-parametric Estimators
Sampling-based estimators have been used in various domains

ranging from databases [21] to ecology (e.g. [2, 3]). Non-parametric

estimators do not require prior knowledge of the query distribution,

yet their success hinges upon the underlying distribution from

which queries are drawn. Indeed, for skewed distributions, it may be

information theoretically impossible to obtain a reasonable estimate.

Recently, non-parametric estimators have been used for database

reconstruction to estimate the support size of the given conditional

probability distribution of a particular record identifier [27].

For our reconstruction attack, we have considered the estima-

tors by Chao and Lee [8] and by Shlosser [42], and the jackknife

estimators described in [2, 3].

For more details about the above estimators, see Appendix D.

We initially considered also the Valiant-Valiant estimator [45] as it

was used in [27]. However, it did not perform as well in our case.

6.2 Experiments
We ran our estimators against two datasets with domain sizes 25×25
and 18× 33. The first dataset is the first day of the Spitz dataset (de-

scribed in Section 5.7), a dataset deeply diagonal exhibiting numer-

ous collinearities and reflectable components. The second database

is the NIS 2008 AGE ≤ 18 & NPR database, a fairly dense medical

database. We utilized Python library PyDistinct [7] to compute the

estimates. They were chosen as they represent two fairly different

real-world data distributions. For more information, see Table 2.

We tested the robustness of each estimator under the (i) uniform

distribution, (ii) Beta(2,1) distribution and (iii) Gaussian(1/2,1/5)

distribution of the queries. Recall that our goal is to estimate the

query densities 𝜌𝑖 for each ID 𝑖 and 𝜌𝑖, 𝑗 for each pair of IDs. Thus,

we obtained estimates 𝜌𝑖 and 𝜌𝑖, 𝑗 from the three estimators under

the three query distributions and computed the mean squared er-

ror (MSE) of such estimates. In Figure 7, we plot the MSE of the

estimators against the query ratio, which we define as the ratio of

the number of queries observed and the total number of possible

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2252

Uniform Gaussian(1/2, 1/5) Beta(2, 1)

(a)

(b)

Figure 7: MSE of the estimators on the (a) Spitz and (b) 2008
NIS AGE ≤ 18 & NPR datasets over the query ratio.

queries. I.e., if we have observed 𝑎 queries (including any duplicates)

and there are a total of 𝑏 possible queries, the query ratio is
𝑎
𝑏
. Note

that even when this ratio is 1, the adversary most likely has not

observed all possible queries. Missing values in the plots of Figure 7

are due to failure by the estimators to produce an answer in some

cases. Overall, we found that the Chao-Lee estimator consistently

performed best, especially for a small query ratio.

7 Approximate Database Reconstruction

Our distribution-agnostic attack for ADR assumes the ordering

of the points and consists of two parts. As we saw in Section 6,

non-parametric estimators may perform differently under different

query distributions. In our experiments, the Chao-Lee estimator

performed the best under all three distributions and we use it to

estimate how many query responses contain a point or a set of

points. We use these estimates to construct a system of equations,

whose solution gives an approximate reconstruction.

7.1 Algorithm
We assume knowledge of the ordering of the database (e.g., as

given by Algorithm 4). The first step of ADR is to build a system

of equations. We know that point 𝑝 with coordinates 𝑝0, 𝑝1 will be

included in 𝜌𝑝 = 𝑝0𝑝1 (𝑁0 − 𝑝0) (𝑁1 − 𝑝1) unique responses. The
Chao-Lee estimator will give us an estimate, 𝜌𝑝 , of 𝜌𝑝 . We then

construct an equation with unknowns 𝑥𝑝 , 𝑦𝑝 .

𝑥𝑝𝑦𝑝 (𝑁0 − 𝑥𝑝) (𝑁1 − 𝑦𝑝) = 𝜌𝑝 (5)

Given a pair of points 𝑝, 𝑞, where 𝑝 dominates 𝑞, we know that

both points are included in 𝜌𝑝,𝑞 = 𝑞0𝑞1 (𝑁0 − 𝑝0) (𝑁1 − 𝑝1) unique
responses. We estimate 𝜌𝑝,𝑞 as 𝜌𝑝,𝑞 , and construct an equation with

unknowns 𝑥𝑝 , 𝑦𝑝 , 𝑥𝑞, 𝑦𝑞 .

𝑥𝑞𝑦𝑞 (𝑁0 − 𝑥𝑝) (𝑁1 − 𝑦𝑝) = 𝜌𝑝,𝑞 (6)

We build a similar equation from any ordering of 𝑝 and 𝑞, fol-

lowing Equation 4. If two points are in both a dominance and

anti-dominance relationship, then they must be collinear. We add

this constraint to our system. We use the Chao-Lee estimator to

approximate the 𝜌 values (𝜌𝑝 , 𝜌𝑝,𝑞) from the multiset of responses

we have seen. We then construct a first guess for the values of the

points using their ordering. Each point 𝑝 is given coordinates cor-

responding to its indexes in the first and second dimension. Finally,

we find an approximation of the database’s point values using a

least-squares approach.

Our ADR attack is summarized in Algorithm 5, which takes as

input a multiset𝑀 of token-response pairs, the ordering 𝐺,𝐺 ′
and

the domain size (𝑁0, 𝑁1). It returns a reconstructed point set.

Algorithm 5: ADR(𝑀,𝐺,𝐺 ′, 𝑁0, 𝑁1)
1: Let 𝑔 be a reconstruction of the point values using𝐺 and𝐺′

, giving

each point a value corresponding to its order in each dimension.

2: Create a system of 𝜌 equations for all single points and pairs, including

any collinearities, utilizing Equations 5 and 6.

3: Using the submultiset𝑀 of token-response pairs we have observed

and the Chao-Lee estimator approximate, the 𝜌 value of each equation,

as described in Section 6.

4: return a least-squares solution to the system of equations initializing

at 𝑔

7.2 Datasets and System
The ADR attack assumes the order of the records as an input. For

our experiments, we picked the correct order from the results of

OR (Algorithm 4). We tested our ADR attack on real world datasets:

the California [30] and Spitz [43] location datasets and the HCUP

NIS medical datasets [1] described in Section 5.7. Due to complexity

constraints, we sub-sampled the datasets (resulting domain and

more information shown in Table 2). We performed one run per

experiment and, for each experiment, we sampled queries according

to the uniform, Beta(2, 1), and Gaussian(1/2, 1/5) distributions.
Our experiments were run on the Brown University Computer

Science Compute Grid, which runs on Intel Xeon and AMDOpteron

CPUs and relies on the Oracle Grid Engine to schedule jobs. We

implemented our attack in Python 3.7.1. For our experiments, we

used PyDistinct [7] to estimate the 𝜌 values and the 𝑙𝑒𝑎𝑠𝑡_𝑠𝑞𝑢𝑎𝑟𝑒𝑠

function from SciPy Optimize [47] to solve our system of equations.

The Numpy [22] library was used for general computing.

7.3 Accuracy Metrics
We measure the accuracy of the reconstruction with the follow-

ing four metrics to take into account different characteristics. The

mean error is the average distance of a reconstructed point to the

original point. We use the normalized mean error , which is ob-

tained by dividing the mean error by 𝑁0 + 𝑁1, where [𝑁0] × [𝑁1]
is the domain of the database. The mean squared error is the

average squared distance of a reconstructed point to the original

point. This widely used error metric (e.g., [27]) gives greater weight

to larger errors. The Hausdorff distance of point sets 𝑃 and 𝑄 ,

denoted 𝐻 (𝑃,𝑄), is a common measure of how far 𝑃 and 𝑄 are

from each other. It is defined as 𝐻 (𝑃,𝑄) = max(ℎ(𝑃,𝑄), ℎ(𝑄, 𝑃),
where ℎ(𝑃,𝑄) = max𝑝∈𝑃 (min𝑞∈𝑄 dist (𝑝, 𝑞)). We obtain the pair-
wise relative distance error by computing all distances between

pairs of original points and between pairs of reconstructed points,

Table 2: Real-world datasets used in our experiments.
Dataset Attributes # Queries #Points Domain

California [30] LAT & LONG 26532800 1000 102 × 102

Spitz [43] LAT & LONG 130500 28 25 × 25

NIS 2008 [1]

AGE<18 & NPR 80784 355 18 × 33

NCH & NDX 663300 529 25 × 67

NCH & NPR 158400 574 25 × 33

NIS 2009 [1]

NCH & NDX 621270 528 27 × 60

NCH & NPR 246753 566 27 × 38

NDX & NPR 1244310 862 60 × 38

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2253

Uniform Gaussian(1/2, 1/5) Beta(2, 1)

(a)

(b)

(c)

Figure 8: Reconstructions generated by our algorithm.
Empty blue circles denote original points and filled green
circles denote reconstructed points. (a) Spitz dataset with
7% query ratio. (b) California dataset with 4% query ratio.
(c) Postprocessing adjustment.

calculating the absolute values of the differences of such distances,

normalizing by the original distances, and taking the mean. This

measure captures the accuracy of the shape of the reconstructed

points. For the Hausdorff distance, we use SciPy’s [47] implementa-

tion of the algorithm in [44]. The other metrics are easily computed.

7.4 Experiments
Figure 8 shows our reconstructions of the Spitz and California

datasets. We cannot present reconstructions of the NIS datasets per

the HCUP data usage agreement. In Figures 9 and 12 (Appendix E),

we give the accuracy metrics and computational resource usage of

our reconstructions for all databases under the different distribu-

tions. On the 𝑥-axis we show the query ratio, i.e., the number of

queries observed by the adversary over the total number of pos-

sible queries. Recall that even when this ratio is 1, the adversary

most likely has not observed all possible queries as some duplicate

queries would typically be issued.

Our attack performs consistently well on both the location and

medical datasets under all four metrics and all three query distribu-

tions. The four accuracy metrics follow similar trends. As expected,

the accuracy of our reconstruction generally improves with the

query ratio. In particular, for the uniform distribution, we already

achieve near perfect reconstruction with query ratio around 10%,

while for the Beta and Gaussian distributions, there are still errors

even at 80% query ratio. Note that the smaller the query ratio is,

the higher the variation of accuracy across experiments is, since

different query samples vary in usefulness. This is partially due our

estimator performing worse under non-uniform distributions and

small query ratios (see Figure 7).

Our experiments required between a few megabytes of memory

to tens of gigabytes for the more computationally intensive ones.

Interestingly, the query ratio seems to have a small effect to the

memory required and the size of the database is the deciding factor.

The experiments needed from a few CPU seconds to several CPU

days to complete. We show the memory and CPU time required by

the experiments in the last and second to last columns of Figure 9, re-

spectively. Note that our code was not optimized for multi-threaded

programming as it was written in Python. In multiple experiments,

the CPU usage tends to be high at low query ratios. We believe this

phenomenon is caused by inaccurate estimates from the estimators

(Section 6) that make finding a least squares solution harder.

We ran our experiments on a computing grid that automatically

allocated CPUs per experiment. We show in Figure 10(a) the his-

togram of an indicator of the speedup provided by the grid for our

experiments. This indicator equals the CPU time divided by the

wall-clock time minus 1. Over all experiments, the mean was 0.629,

the maximum 4.372, and the variance 0.315, confirming the modest

speedup provided by the grid. We infer that our experiments can

be reproduced in a computing environment with ≥ 5 CPUs.

7.5 Post-processing Adjustment
In a number of datasets, our solution is topologically close to the

original data, yet translated. We now explore how to further reduce

the reconstruction error. In Figure 8b, the shape of California is clear,

yet in the Gaussian and Beta cases, the points are shifted towards

the bottom right. If we were given the centroid of the original

points, we could compare it with the centroid of our solution, and

translate all points by their difference, as shown in Figure 8c.

We ran this adjustment technique on the reconstructions of the

California dataset and NIS 2009 NCH & NDX and NCH & NPR

datasets. For the latter, we used the centroids of the corresponding

2008 NIS datasets as proxies for the original centroids. This choice

is motivated by the fact that the adversary might have access to the

statistics of a related dataset with a similar centroid. We applied the

adjustment only to the Beta and Gaussian distributions since our

reconstructions under the uniform distribution are already very

good.We report in Figure 10(b) the variation of the normalizedmean

error (NME), mean squared error (MSE), and Hausdorff distance

(HD) due to our post-processing adjustment. Since we are only

translating the points, the pairwise relative distance error does not

change. The experiments show that this simple adjustment often

significantly reduces reconstruction error.

8 Conclusion and Future Work Directions
This paper presents practical reconstruction attacks from 2D range

queries on encrypted databases and furthers our understanding of

the intrinsic limitations of such attacks. A first future direction is

improving the performance of OR and ADR with advanced data

structures and specialized nonlinear solvers. Another direction is

exploring partial OR from a subset of the access pattern leakage.

All symmetries in two-dimensions occur also in higher dimensions

since we can project the points onto a 2D plane. Many of our

techniques extend naturally to higher dimensions, including the

notion of chains/antichains. It is an open problem whether new

symmetries arise in dimensions greater than two.

Acknowledgments
Work supported in part by the Kanellakis Fellowship at Brown

University.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2254

Normalized Mean Mean Squared Hausdorff Pairwise Relative CPU Usage Max Memory
Error Error Distance Distance Error (hours) Required (GB)

California: LAT & LONG

Spitz: LAT & LONG

NIS 2008: AGE<18 & NPR

NIS 2008: NCH & NDX

NIS 2008: NCH & NPR

Figure 9: Accuracy (measured with the metrics defined in Section 7.3) and computational resource usage (CPU time and maxi-
mummemory required) of our reconstructions of the California, Spitz and NIS 2008 datasets (see Section 7.2) as a function of
the query ratio (number of queries observed by the adversary over the total number of possible queries), under the Uniform
(blue circle •), Beta (green star ★), and Gaussian (orange ♦) query distributions. In Section 7.2, we describe each database and
its characteristics, including the domain size and the total number of possible range queries.

(a) (b)

Figure 10: (a) Histogram of the grid speedup (CPU time over wall-clock time minus 1) of our experiments. The mean is 0.629,
the maximum is 4.3725 and the variance is 0.315. (b) Impact of applying the adjustment technique of Section 7.5 to the recon-
structions of the California and NIS 2009 NCH&NDX andNCH&NPR datasets for the Beta (B) and Gaussian (G) distributions.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2255

References
[1] Agency for Healthcare Research and Quality. 2008, 2009. Healthcare Cost and

Utilization Project (HCUP). Nationwide Inpatient Sample (NIS) datasets NIS 2008

and 2009, https://www.hcup-us.ahrq.gov/.

[2] Kenneth P. Burnham and W. Scott Overton. 1978. Estimation of the Size of a

Closed Population when Capture Probabilities vary Among Animals. Biometrika
65, 3 (1978), 625–633.

[3] Kenneth P. Burnham andW. Scott Overton. 1979. Robust Estimation of Population

Size When Capture Probabilities Vary Among Animals. Ecology 60, 5 (1979),

927–936.

[4] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

Abuse Attacks Against Searchable Encryption. In Proc. ACM Conf. on Computer
and Communications Security (CCS).

[5] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin

Roşu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-

tion with Support for Boolean Queries. In Advances in Cryptology (CRYPTO).
[6] David Cash, Ruth Ng, and Adam Rivkin. 2021. Improved Structured Encryption

for SQL Databases via Hybrid Indexing. In Applied Cryptography and Network
Security, Proceedings, Part II (LNCS, Vol. 12727). Springer, 480–510.

[7] Edwin Chan. 2020. PyDistinct. https://github.com/chanedwin/pydistinct/

[8] Anne Chao and Shen-Ming Lee. 1992. Estimating the Number of Classes via

Sample Coverage. J. Amer. Statist. Assoc. 87, 417 (1992), 210–217.
[9] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-

giannakis, and Minos Garofalakis. 2016. Practical private range search revisited.

In Proc. ACM Int. Conf. on Management of Data (SIGMOD).
[10] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-

giannakis, Minos Garofalakis, and Charalampos Papamanthou. 2018. Practical

Private Range Search in Depth. ACM Transactions on Database Systems 43, 1,
Article 2 (March 2018), 52 pages.

[11] Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. 1983. On the

shape of a set of points in the plane. IEEE Transactions on Information Theory 29,

4 (1983), 551–559.

[12] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin

Rosu, and Michael Steiner. 2015. Rich Queries on Encrypted Data: Beyond Exact

Matches. In 20th European Symposium on Research in Computer Security 2015
(ESORICS 2015).

[13] Francesca Falzon, Evangelia AnnaMarkatou, Akshima, David Cash, Adam Rivkin,

Jesse Stern, and Roberto Tamassia. 2020. Full Database Reconstruction in Two

Dimensions. In Proc. ACMConf. on Computer and Communications Security (CCS).
[14] Stefan Felsner and Lorenz Wernisch. 1998. Maximum 𝑘-Chains in Planar Point

Sets: Combinatorial Structure and Algorithms. SIAM J. Comput. 28, 1 (1998),

192–209.

[15] Craig Gentry. 2009. A Fully Homomorphic Encryption Scheme. Ph.D. Dissertation.
Stanford, CA, USA. Advisor(s) Boneh, Dan.

[16] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation

on oblivious RAMs. J. ACM 43, 3 (1996), 431–473.

[17] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,

Rachit Agarwal, and Thomas Ristenpart. 2020. Pancake: Frequency Smoothing

for Encrypted Data Stores. In 29th USENIX Security Symposium (USENIX Security
20).

[18] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.

2018. Pump up the Volume: Practical Database Reconstruction from Volume

Leakage on Range Queries. In Proc. ACM Conf. on Computer and Communications
Security (CCS). ACM, 315–331.

[19] Paul Grubbs, Marie-Sarah Lacharité, BriceMinaud, and Kenneth G. Paterson. 2019.

Learning to Reconstruct: Statistical Learning Theory and Encrypted Database

Attacks. In Proc. IEEE Symp. on Security and Privacy (S&P).
[20] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted Databases:

NewVolumeAttacks against RangeQueries. In Proc. ACMConference on Computer
and Communications Security. 361–378.

[21] P. Haas, J. Naughton, S. Seshadri, and L. Stokes. 1995. Sampling-Based Estimation

of the Number of Distinct Values of an Attribute. In Proceedings of the 21th
International Conference on Very Large Data Bases (VLDB ’95). San Francisco, CA,

USA, 311–322.

[22] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,

Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,

Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van

Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,

Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren

Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.

Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362.
[23] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.

In 19th Annual Network and Distributed System Security Symposium, NDSS 2012,
San Diego, California, USA, February 5-8, 2012.

[24] Seny Kamara and Tarik Moataz. 2018. SQL on Structurally-Encrypted Databases.

In Advances in Cryptology (ASIACRYPT).

[25] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic

Attacks on Secure Outsourced Databases. In Proc. ACM Conf. on Computer and
Communications Security (CCS).

[26] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2019. Data Recovery on Encrypted Databases With 𝑘-Nearest Neighbor Query

Leakage. In Proc. IEEE Symp. on Security and Privacy (S&P).
[27] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2020. The State of the Uniform: Attacks on Encrypted Databases Beyond the

Uniform Query Distribution. In Proc. IEEE Symp.on Security and Privacy (S&P).
[28] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2021. Response-Hiding Encrypted Ranges: Revisiting Security via Parametrized

Leakage-Abuse Attacks. In Proc. IEEE Symp. on Security and Privacy (S&P).
[29] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018. Improved

reconstruction attacks on encrypted data using range query leakage. In Proc.
IEEE Symp. on Security and Privacy (S&P).

[30] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-

Hua Teng. 2005. California Road Network Dataset. Downloaded from http:

//www.cs.utah.edu/~lifeifei/SpatialDataset.htm.

[31] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua

Teng. 2005. On Trip Planning Queries in Spatial Databases. In Advances in Spatial
and Temporal Databases. Springer, 273–290.

[32] Evangelia Anna Markatou and Roberto Tamassia. 2019. Full Database Reconstruc-

tion with Access and Search Pattern Leakage. In Proc. Int. Conf on Information
Security (ISC).

[33] Evangelia AnnaMarkatou and Roberto Tamassia. 2019. Mitigation Techniques for

Attacks on 1-Dimensional Databases that Support Range Queries. In Information
Security - 22nd International Conference, ISC 2019.

[34] Simon Oya and Florian Kerschbaum. 2021. Hiding the Access Pattern is Not

Enough: Exploiting Search Pattern Leakage in Searchable Encryption. In 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association.

[35] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran

Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna

Badrinarayanan. 2016. Big Data Analytics over Encrypted Datasets with Seabed.

In USENIX Symp. on Operating Systems Design and Implementation (OSDI). 587–
602.

[36] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating

Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps

via Hashing. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (London, United Kingdom) (CCS ’19). 79–93.

[37] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2019. Arx: An Encrypted

Database Using Semantically Secure Encryption. 12, 11 (July 2019), 1664–1678.

[38] Rishabh Poddar, Stephanie Wang, Jianan Lu, and Raluca Ada Popa. 2020. Practical

Volume-Based Attacks on Encrypted Databases. In IEEE European Symp. on
Security and Privacy (EuroS&P). 354–369.

[39] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrish-

nan. 2011. CryptDB: protecting confidentiality with encrypted query processing.

In Proc. ACM Symp. on Operating Systems Principles (SOSP). 85–100.
[40] Maurice H. Quenouille. 1949. Approximate Tests of Correlation in Time-Series.

Journal of the Royal Statistical Society. Series B (Methodological) 11, 1 (1949), 68–84.
[41] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Per-

rig. 2007. Multi-Dimensional Range Query over Encrypted Data. In 2007 IEEE
Symposium on Security and Privacy (SP). USA, 350–364.

[42] A. Shlosser. 1981. On estimation of the size of the dictionary of a long text on

the basis of a sample. Engineering Cybernetics 19 (1981), 97–102.
[43] Malte Spitz. 2011. CRAWDAD dataset spitz/cellular (v. 2011-05-04). Downloaded

from https://crawdad.org/spitz/cellular/20110504.

[44] Abdel Aziz Taha and Allan Hanbury. 2015. An Efficient Algorithm for Calculating

the Exact Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence 37, 11 (2015), 2153–2163.

[45] Paul Valiant and Gregory Valiant. 2013. Estimating the Unseen: Improved Es-

timators for Entropy and other Properties. In Advances in Neural Information
Processing Systems, Vol. 26. 2157–2165.

[46] Gérard Viennot. 1984. Chain and Antichain Families Grids and Young Tableaux.

In Orders: Description and Roles Ordres: Description et Rôles. North-Holland Math-

ematics Studies, Vol. 99. North-Holland, 409 – 463.

[47] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,

Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-

rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,

Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,

Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,

Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,

Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamen-

tal Algorithms for Scientific Computing in Python. Nature Methods 17 (2020),
261–272.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2256

https://www.hcup-us.ahrq.gov/
https://github.com/chanedwin/pydistinct/
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
https://crawdad.org/spitz/cellular/20110504

[48] Boyang Wang, Yantian Hou, Ming Li, Haitao Wang, and Hui Li. 2014. Maple:

Scalable Multi-Dimensional Range Search over Encrypted Cloud Data with Tree-

Based Index. In Proc. ACM Symp. on Information, Computer and Communications
Security (ASIA CCS).

[49] Zheguang Zhao, Seny Kamara, Tarik Moataz, and Stan Zdonik. 2021. Encrypted

Databases: From Theory to Systems. In Conf. on Innovative Data Systems Research
(CIDR).

A Algorithm 8 (DominanceID)
We describe how given the response set RS(D) and the ID 𝑎 of

a point with height 0, we compute the full set of IDs of points

that dominate D[𝑎]. Let 𝑎, 𝑏 ∈ [𝑅] be the IDs of two points in

D. Algorithm Boxes, takes as input a pair (𝑎, 𝑏) and returns the

following responses of RS(D) (see Figure 11):

• 𝑆𝑎,𝑏 : minimal response containing 𝑎 and 𝑏.

• 𝑃𝑎,𝑏 : D minus the maximal responses containing 𝑏 but not 𝑎;

i.e., set of points 𝑝 such that every response containing 𝑏

and 𝑝 contains also 𝑎.

• 𝑃𝑏,𝑎 : D minus the maximal responses containing 𝑎 but not 𝑏;

i.e., set of points 𝑝 such that every response containing 𝑎

and 𝑝 contains also 𝑏.

Algorithm 6: Boxes(𝑎, 𝑏)
1: Let 𝑆𝑎,𝑏 be the smallest response in RS(D) containing 𝑎 and 𝑏,

2: Let 𝐿 = D and 𝑃𝑏,𝑎 , 𝑃𝑎,𝑏 be empty lists

3: for 𝑝 ∈ 𝐿 do
4: if �𝑟 ∈ RS(D) , s.t. 𝑝,𝑏 ∈ 𝑟 and 𝑎 ∉ 𝑟 then
5: Add 𝑝 to 𝑃𝑎,𝑏
6: if �𝑟 ∈ RS(D) , s.t. 𝑝, 𝑎 ∈ 𝑟 and 𝑏 ∉ 𝑟 then
7: Add 𝑝 to 𝑃𝑏,𝑎
8: return 𝑃𝑏,𝑎 , 𝑆𝑎,𝑏 and 𝑃𝑎,𝑏

b

Pa,b

Sa,b

Pb,a

a

b

Pa,b

Sa,b

Pb,a

a

Figure 11: Sets output by Algorithm 6 for 𝑎, 𝑏 ∈ D, when 𝑏

strictly anti-dominates 𝑎 (left) and they are co-linear (right).
Given a pair of IDs (𝑎, 𝑏), there are at most two distinct maximal

responses containing 𝑎 but not 𝑏 (or 𝑏 but not 𝑎). These responses

comprise the points in the maximal horizontal and vertical strips

of the domain that contain 𝑎 but not 𝑏 (or 𝑏 but not 𝑎). If 𝑎 and

𝑏 share the same horizontal or vertical coordinate, only one of

the above strips is nonempty. Algorithm 8 (DominanceID) uses
Boxes to determine if top dominates 𝑎. If yes, then we return the

minimal response containing 𝑎, top and right. Else topmust strictly

antidominate 𝑎. Let 𝑆 be the smallest response containing 𝑎, top
and right and let𝑀 be the smallest response containing 𝑎 and top.
It is clear that 𝑆 −𝑀 contains all IDs of points that strictly dominate

𝑎. To find the IDs of points that are colinear with 𝑎, we run Edges
with 𝑀 − {𝑎} as input; the IDs of points that are colinear with 𝑎

must be one of the edges in the output. In particular, the colinear

points must be 𝑝 ∈ 𝐸 such that 𝐸 is the edge not containing top, left,
or any element of 𝐴0. And so the algorithm outputs (𝑆 −𝑀) ∪ 𝐸.

Algorithm 7: Edges(𝑆,RS(D))
1: Let 𝑅𝑆′ be the set of responses that contain only points in 𝑆

2: Let L be the largest response in 𝑅𝑆′

3: Let 𝑆1 be the 2
𝑛𝑑

largest response in 𝑅𝑆′. 𝐸1 = 𝐿 − 𝑆1.

4: Let 𝑆2 be the 2
𝑛𝑑

largest response containing 𝐸1. 𝐸2 = 𝐿 − 𝑆2.

5: Let 𝑆3 be the 2
𝑛𝑑

largest response containing 𝐸1 and 𝐸2. If 𝑆3 exists,

𝐸3 = 𝐿 − 𝑆3.

6: Let 𝑆4 be the 2
𝑛𝑑

largest set containing 𝐸1, 𝐸2, and 𝐸3. If 𝑆4 exists,

𝐸4 = 𝐿 − 𝑆4.

7: return 𝐸1, 𝐸2, 𝐸3, 𝐸4

Algorithm 8: DominanceID(𝑎, top, left, right,RS(D))
1: Let 𝑆1 be the smallest response that contains left, top and right.
2: Let 𝑆2 be the smallest response that contains 𝑠1, top and right.
3: Let𝑀 be the smallest response that includes 𝑠1 and top
4: for 𝑝 ∈ 𝑀 do
5: if 𝑝 ∈ 𝑀 − 𝑆2 then
6: 𝑃𝑝,top, 𝑆𝑝,top, 𝑃top,𝑝 = Boxes(top, 𝑝)
7: 𝑆 = 𝑃𝑝,top ∪ 𝑆𝑝,top ∪ 𝑃top,𝑝
8: if left, right ∈ 𝑆 then
9: return 𝑆2 // 𝑎 and top are collinear

10: else if left ∈ 𝑆 then
11: return 𝑆2 // top dominates 𝑎

12: else if right ∈ 𝑆 then
13: // top anti-dominates 𝑎

14: 𝐸 = Edges(𝑀 − {𝑎},RS(D))
15: 𝑆2 = 𝑆2 −𝑀

16: Add all 𝑝 in an edge in 𝐸 not containing top or 𝑎′ ∈ 𝐴0 to 𝑆2.

17: return 𝑆2

18: else if 𝑝 ∈ 𝑀 − 𝑆1 then
19: 𝑃𝑝,𝑎, 𝑆𝑎,𝑝 , 𝑃𝑎,𝑝Boxes(𝑎, 𝑝)
20: 𝑆 = 𝑃𝑝,𝑎 ∪ 𝑆𝑎,𝑝 ∪ 𝑃𝑎,𝑝

21: if left, right ∈ 𝑆 then
22: return 𝑆2 // 𝑎 and top are collinear

23: else if right ∈ 𝑆 then
24: return 𝑆2 // top dominates 𝑎

25: else if left ∈ 𝑆 then
26: // top anti-dominates 𝑎

27: 𝐸 = Edges(𝑀 − {𝑎},RS(D))
28: 𝑆2 = 𝑆2 −𝑀

29: Add all 𝑝 in an edge in 𝐸 not containing top or 𝑎′ ∈ 𝐴0 to 𝑆2.

30: return 𝑆2

31: return 𝑆2

B Algorithm 9 (FindExtremePairs)
Let D be a database with 𝑅 records and let RS(D) be its response
set. Algorithm 9 (FindExtremePairs) returns all configurations of
extreme points (left, right, top, bottom) such that no points are dom-

inated by left and bottom, and no points dominate right and top.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2257

Algorithm 9: FindExtremePairs(RS(D))
Input: Response set RS(D) of database D
1: 𝐸1, 𝐸2, 𝐸3, 𝐸4 = Edges(D,RS(D))
2: Let PossibleConfigs be all possible combinations of 𝐸1, 𝐸2, 𝐸3 and 𝐸4

into LeftE,RightE, TopE,BottomE.
3: Initialize empty dictionary config.
4: for LeftE,RightE, TopE,BottomE in PossibleConfigs do
5: for 𝐸1, 𝐸2 ∈ {LeftE,BottomE}, {RightE, TopE} do
6: for 𝑎,𝑏 ∈ 𝐸1 × 𝐸2 do
7: if the smallest response in RS(D) that contains 𝑎 and 𝑏 does not

contain any other element of 𝐸1 or 𝐸2 then
8: Add 𝑎,𝑏 to config under their corresponding key left, right,

top, or bottom.

9: Return to line 5.

10: Add config to PosExtremes.
11: Return PosExtremes

C Proofs

C.1 Proof of Proposition 2
Proof. Let D[𝑖] = 𝑝 , D[𝑗] = 𝑞, D′[𝑖] = 𝑝 ′, and D′[𝑗] = 𝑞′.

We first show that RS(D) ⊆ RS(D′). Consider a response 𝐴 in

RS(D) that contains 𝑖 and not 𝑗 . We will exemplify a query to

D′
with response 𝐴. Consider the set 𝐵 = (𝐴 − {𝑖}). Since D[𝑖]

has a unique maximal value in the second coordinate the set 𝐵

must be an element of RS(𝐷). By assumption, RS(D − {𝑝, 𝑞}) =

RS(D′−{𝑝 ′, 𝑞′}) and sowe have that𝐵 ∈ RS(D′). Let (𝑐, 𝑑) ∈ D2
be

a query that generates the response 𝐵 inD′
. Now consider the query

((𝑚𝑖𝑛0, 1), (𝑚𝑎𝑥0, 𝑑1)) where 𝑚𝑖𝑛0 = min(𝑐0, 𝑝0, 𝑝 ′
0
) and 𝑚𝑎𝑥0 =

max(𝑑0, 𝑝0, 𝑝 ′
0
). Since the only additional identifier contained in this

region is 𝑖 , then the response generated by this query is𝐴 = 𝐵∪ {𝑖}
which implies 𝐴 ∈ RS(D′). A similar argument holds for queries

that contain 𝑗 and not 𝑖 , as well as queries that contain both 𝑖 and 𝑗 ,

which concludes the forward direction of the proof. One can also

extend this reasoning to show that RS(D′) ⊆ RS(D). □

C.2 Proof of Proposition 3
Proof. Let D[𝑖] = 𝑞 and D′[𝑖] = 𝑞′. By assumption RS(D −

{𝑞}) = RS(D′ − {𝑞′}). We first show that RS(D) ⊆ RS(D′). We

claim that for any response𝐴∪{𝑖} in RS(D) there exists a response
𝐴 ∪ {𝑖} ∈ RS(D′). Let 𝐴 ∪ {𝑖} be a response in RS(D) and let

(𝑐, 𝑑) ∈ D2
be a query to D that produces such a response. We will

consider two possible cases and in each case explicitly give a query

to D′
that must result in the response 𝐴 ∪ {𝑖}.

Case 1: 𝑝0 < 𝑐0. Consider the query ((𝑐0,𝑚𝑖𝑛1), 𝑑) issued to D′
such

that𝑚𝑖𝑛1 = min(𝑞′
1
, 𝑐1). If𝑚𝑖𝑛1 = 𝑐1 then

Resp(D′, ((𝑐0,𝑚𝑖𝑛1), 𝑑)) = Resp(D′, (𝑐, 𝑑)) = 𝐴 ∪ {𝑖}
since all points 𝑟 ∈ 𝐴 are identical in both D and D′

and 𝑞′ is
contained in this query. Else if 𝑚𝑖𝑛1 = 𝑞′

1
then by definition of

close pair, 𝑞, 𝑞′ must minimally dominate 𝑝 . So no additional points

beside 𝑞′ are contained in the response generated by ((𝑐0,𝑚𝑖𝑛1), 𝑑)
thus Resp(D′, ((𝑐0,𝑚𝑖𝑛1), 𝑑)) = 𝐴 ∪ {𝑖}.
Case 2: 𝑐0 ≤ 𝑝0. Since the query (𝑐, 𝑑) contains𝑞 then we have 𝑐 ⪯ 𝑝

and 𝑞 ⪯ 𝑑 . Moreover 𝑝 ⪯ 𝑞′ ⪯ 𝑞 and so Resp(D′, (𝑐, 𝑑)) = 𝐴 ∪ {𝑖}.
That proves the forward direction of the proof. A similar ar-

gument holds for the backward direction and we conclude that

RS(D) = RS(D′). □

C.3 Proof of Lemma 5.1
Proof. We first show that Algorithm 7 returns the correct edges

i.e. the sets 𝐸𝑖 for 𝑖 ≤ 4 contain IDs of all points with an extreme

coordinate value. Note that the second largest response in RS(D)
must exclude the ID of some extreme point 𝑝 . For a contradiction,

suppose 𝑝 is not extreme. Then we could minimally extend the

query to include 𝑝 and the resulting query would have a response

strictly larger than the original query and strictly smaller than [𝑅]
since it is not extreme, hence a contradiction. Now consider the

second largest response containing the ID of 𝑝 . The remaining ID(s)

must correspond to points with an extreme coordinate value in

another direction, else we could minimally extend the query to

include the non-extreme point(s). By extending this reasoning, we

recover the IDs of all points with an extreme coordinate.

In Algorithm 9, line 2 stores the at most 4! assignments of the

𝐸𝑖 to LeftE,RightE, TopE, and BottomE. The for loop on line 4 then

iterates through each possible assignment to identify the correct

IDs within each edge set. We want to find the IDs for the left-

most point, 𝑎, and bottom-most point, 𝑏, such that no points are

dominated by D[𝑎] or D[𝑏]. This corresponds to finding 𝑎 ∈ LeftE
and 𝑏 ∈ BottomE such that the minimal response containing them

contains no other extreme points. Suppose for a contradiction that

some edge point 𝑐 was dominated by either 𝑎 or 𝑏, then the minimal

query must also contain 𝑐 . A similar argument holds for the top-

most and right-most points.

The algorithm terminates in 𝑂 (𝑅 |RS(D) |) time. It takes 𝑂 (𝑅2 ·
|RS(D) |) time to find the edges. Then, we iterate through pairs of

edges and look through RS(D) to find a smallest response. □

C.4 Proof of Lemma 5.2
Proof. Let left, right, top and bottom be the points defined by

config. Without loss of generality, assume that right dominates left
and bottom. We first show that lines 2 to 7 find a set of IDs of points

that are not dominating any point in D (i.e. a minimal antichain

𝐴0 of D up to rotation/reflection). By Algorithm 9, no point is

dominated by either left or bottom. Let 𝑆 be the smallest response

in RS(D) containing left and bottom. All points not dominated by

left and bottom must be in 𝑆 , and thus 𝐴0 = 𝑆 .

By assumption, right must dominate all points with IDs in 𝑆 . Let

𝑝 be a point with ID in 𝑆 and consider the response 𝑇 of query

(𝑝, right). If there is a point 𝑞 with ID in 𝑆 such that 𝑝 ⪯ 𝑞, then

its ID must also be in response 𝑇 . In line 6 we find the set 𝑄 of all

such IDs and delete 𝑄 from 𝐴0. Since the for loop on line 4 iterates

through all IDs in 𝑆 , and deletes the IDs of all points that must

dominate at least one other point in 𝑆 , then at the end of the loop

𝐴0 must be the set of all points not dominating any other point.

On lines 10 to 18, we construct the dominance graph. Let 𝑆 be the

IDs output by DominanceID(RS(D), 𝑎) for some 𝑎 ∈ 𝐴0. Note that

𝑆 − {𝑎} corresponds to the IDs of all records that dominate D[𝑎].
The for loop starting on line 14 correctly builds the dominance

subgraph on all IDs in 𝑆 . We show that the following loop invariant

is maintained: at the end of iteration ℓ (1) no point with ID in

𝑆 \𝑉 (𝐺𝑎) is dominated by a point with a vertex in 𝐺𝑎 and (2) if 𝑖

and 𝑗 are in 𝑉 (𝐺𝑎) and D[𝑗] minimally dominates D[𝑗], then edge

(𝑖, 𝑗) is in𝐺𝑎 . At the start𝐺𝑎 = {𝑎}; this is correct since 𝑎 ∈ 𝐴0 and

𝐴0 is the set of IDs of points that do not dominate any other point.

Assume that at iteration ℓ the invariant holds. Find the next smallest

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2258

response 𝑇 that contains 𝑎 and only other IDs in 𝑆 . If 𝑇 contains 𝑣

not in 𝐺𝑎 then add it to 𝐺𝑎 . (1) holds since no point in 𝑆 \𝑉 (𝐺𝑎)
dominates D[𝑣], otherwise it would be contained in𝑇 and we could

form a strictly smaller response contradicting the minimality of 𝑇 .

For each sink 𝑡 ∈ 𝐺𝑎 such that 𝑡 ∈ 𝑇 we add (𝑡, 𝑣) to 𝐺𝑎 . (2) holds

since D[𝑣] must dominate all points with IDs in 𝑇 ∩ 𝑉 (𝐺𝑎) and
must minimally dominate all sinks 𝑡 in 𝐺𝑎 that are contained in 𝑇 .

Suppose there is some ID 𝑗 in 𝑉 (𝐺𝑎) that is minimally dominated

by 𝑣 but is not a sink. Then this would violate the correctness of

𝐺𝑎 at the end of iteration ℓ and hence this cannot happen.

Putting it all together, we want to show that taking the union of

all 𝐺𝑎 gives us the complete dominance graph 𝐺 . Let 𝑝, 𝑞 ∈ D be

any points such that 𝑝 ⪯ 𝑞. By correctness of 𝐴0, there exists some

𝑎 ∈ 𝐴0 such that D[𝑎] ⪯ 𝑝, 𝑞, and thus 𝑝 and 𝑞 are contained in the

minimal query of 𝑎, right, and top. By the correctness of 𝐺𝑎 , then

an edge from the IDs of 𝑝 to 𝑞 must be added when constructing𝐺𝑎 .

Since every dominance edge is added to a graph𝐺𝑎 of some 𝑎, then

taking the union over all 𝐺𝑎 gives the complete dominance graph

of D. The Algorithm terminates in 𝑂 (𝑅3 |RS(D) |) time. It takes

𝑂 (𝑅 · |RS(D) |) time to find the first antichain. Then, Algorithm 8

takes 𝑂 (𝑅2 · |RS(D) |) and may be run 𝑅 times. □

C.5 Proof of Lemma 5.3
Proof. Let𝐴0 be the set of IDs of points with height 0. We argue

that the height of 𝑝 ∈ 𝑉 is given by the maximum length of a path

from 𝑎 to 𝑝 over all 𝑎 ∈ 𝐴0. Fix some 𝑝 ∈ 𝑉 and suppose that

the maximum length of any path from the vertices in 𝐴0 to 𝑝 is ℓ ,

and let there be such a maximal path from some 𝑎 ∈ 𝐴0 to 𝑝 . By

correctness of Algorithm 1, the path from 𝑎 to 𝑝 in 𝐺 corresponds

to a chain in database D. Thus the height of 𝑝 is ≥ ℓ . Suppose for a

contradiction that 𝑝 has height ℓ ′ > ℓ ; By definition of height there

must exist a chain 𝐶 ⊆ D of size ℓ ′ with 𝑝 as the maximal element.

Let 𝑐1 ⪯ 𝑐2 ⪯ · · · ⪯ 𝑐ℓ′ be the elements of 𝐶 . We have that 𝑐𝑖+1
must minimally dominate 𝑐𝑖 , otherwise we could could extend the

chain from 𝑎 to 𝑝 to have length greater than ℓ ′. By correctness

of 𝐺 , each edge (𝑐𝑖 , 𝑐𝑖+1) must be in 𝐺 . Hence the length of the

longest path from 𝑎 to 𝑝 in 𝐺 is ℓ ′ > ℓ , a contradiction. Thus the

height of 𝑝 is given by the length of the longest path from 𝑎 to 𝑝

over all 𝑎 ∈ 𝐴0. Let 𝐿 be the number of partitions in the canonical

antichain partition of D. We have shown that Algorithm computes

the partitionA = (𝐴0, . . . , 𝐴𝐿) correctly. Let𝑎1, . . . , 𝑎𝑚 be elements

of a partition𝐴 ∈ A. We show that Algorithm 2 correctly computes

an ordering of 𝑎1, . . . , 𝑎𝑚 i.e. a 𝑎𝛾1 , . . . , 𝑎𝛾𝑚 such that 𝛾𝑖 = 1, . . . ,𝑚

and for all 𝑗 either 𝑎𝛾 𝑗 ⪯𝑎 𝑎𝛾 𝑗+1 or 𝑎𝛾 𝑗+1 ⪯𝑎 𝑎𝛾 𝑗 . If |𝐴| < 3 then

we are done. |𝐴| ≥ 3 then on line 12 we compute all responses in

RS(D) that contain exactly two elements in𝐴 and denote this set as

𝑆 . A response containing exactly two elements 𝑎, 𝑎′ ∈ 𝐴 exists only

if 𝑎 minimally anti-dominates 𝑎′ (or vice versa). Next we delete

all 𝑝 ∈ D − 𝐴 from responses in 𝑆 and make it a set. Let {𝑎, 𝑎′}
be an element of the resulting set 𝑆 . Without loss of generality,

suppose 𝑎′ minimally anti-dominates 𝑎. Suppose that there exists

another set {𝑎′, 𝑎′′} ∈ 𝑆 . Then by transitivity 𝑎′′ must minimally

anti-dominate 𝑎′. We can thus “order" the elements in 𝐴 by finding

consecutive pairs of points in the responses.

This Algorithm terminates in 𝑂 (𝑅2 |RS(D) |) time, as it takes

𝑂 (𝑅2) time to find the longest paths in 𝐺 and 𝑂 (𝑅2 |RS(D) |) to
order the antichains. □

C.6 Proof of Lemma 5.4
Proof. The antichains returned by Algorithm 2 may have in-

consistent direction. The first step of Algorithm 3 is to fix their

orientation. We assume that the first antichain, 𝐴0, has the correct

orientation. Then, we find the first element of 𝐴0 that has a dom-

inance edge to a point in 𝐴1, the second antichain. Let that edge

be (𝑐1, 𝑐2), 𝑐1 ∈ 𝐴0, 𝑐2 ∈ 𝐴1. If there are multiple options for 𝑐2, we

pick the smallest one in order. Note that each member 𝑝 of antichain

𝑖 must have a dominance edge with some member 𝑞 of antichain

𝑗 , 𝑗 < 𝑖 . Otherwise, 𝑝 would be part of some previous antichain.

If the order of antichain 1 is wrong, then a point 𝑐 ′
1
∈ 𝐴0 in order

before 𝑐1 must have an edge with point 𝑐 ′
2
∈ 𝐴1, in order after

𝑐2. If the chains were correctly ordered that would be impossible

as 𝑐 ′
2
anti-dominates 𝑐1 and 𝑐1 anti-dominates 𝑐 ′

1
. Thus, 𝑐 ′

2
cannot

dominate 𝑐 ′
1
. Thus, Algorithm 2 can correctly orient the second

chain given the order of the previous antichains. Maintaining this

invariant, Algorithm 2 correctly orients all antichains.

We begin constructing the anti-dominance graph by adding

anti-dominance edges between consecutive pairs of points in each

antichain. It remains to add anti-dominance edges between points

in different antichains. The algorithm iterates through pairs of

chains, and finds points 𝑎𝑖 and 𝑎 𝑗 that are not connected in 𝐺 and

𝑎𝑖 ∈ 𝐴𝑖 , 𝑎 𝑗 ∈ 𝐴 𝑗 , 𝑖 < 𝑗 . Point 𝑎𝑖 either anti-dominates 𝑎 𝑗 or 𝑎 𝑗
anti-dominates 𝑎𝑖 . In order to determine their relationship, we look

for a dominance edge between the antichains. If 𝑎 𝑗 anti-dominates

𝑎𝑖 , then all predecessors of 𝑎𝑖 are also anti-dominated by 𝑎 𝑗 and

its successors. So, if a predecessor of 𝑎 𝑗 dominates a successor of

𝑎𝑖 . Then 𝑎 𝑗 must anti-dominate 𝑎𝑖 . Similarly, if a successor of 𝑎 𝑗
dominates a predecessor of 𝑎𝑖 , then 𝑎𝑖 anti-dominates 𝑎 𝑗 .

This technique finds only strict anti-dominance edges. It remains

to find any collinear anti-dominance edges. Given a pair of points

𝑝 and 𝑝 , such that 𝑞 anti-dominates 𝑝 , and a point 𝑘 that is in

Boxes(𝑝, 𝑞), 𝑘 must have an anti-dominance relationship with both.

If no such path exists in 𝐺 ′
, we add appropriate edges depending

on which of the Boxes 𝑘 is in. Note that in some cases, as explained

by Proposition 3, it’s impossible to determine all collinearities. Our

definition of the anti-dominance graph is that it contains minimal

anti-dominance edges. Thus, after we remove any transitive edges,

we have generated D’s anti-dominance graph.

The algorithm takes 𝑂 (𝑅2 |RS(D) |) time: 𝑂 (𝑅2) to fix the an-

tichains and add edges between them, and 𝑂 (𝑅3 · |RS(D) |) to run

Boxes for any anti-dominance pair. □

C.7 Proof of Theorem 5.5
Proof. By Lemma 5.1, PossibleConfigs has all possible config-

urations of a given set of extreme points. Thus, at some point we

pick the correct config. By Lemmas 5.2 and 5.4, we know that𝐺 and

𝐺 ′
return correct weak dominance and anti-dominance graphs. By

Proposition 2, we know that if the smallest response that contains

top and bottom is empty, then they are an antipodal pair. Similarly

for left and right. We find all such pairs. We iterate though pairs of

points and find any that satisfy the close pair requirements from

Definition 3.3, constructing the closePairs set. The anti-dominance

graph encodes the components as the connected components of

the anti-dominance graph form the flippable components.

By Theorem 3.5, given (𝐺,𝐺 ′, antipodalPairs, closePairs) out-
put by the algorithm, we can construct all members of set Eo (D).

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2259

Normalized Mean Mean Squared Hausdorff Pairwise Relative CPU Usage Max Memory
Error Error Distance Distance Error (hours) Required (GB)

NIS 2009: NCH & NDX

NIS 2009: NCH & NPR

NIS 2009: NDX & NPR

Figure 12: Accuracy (measured with the metrics defined in Section 7.3) and computational resource usage (CPU time and max-
imum memory required) of our reconstructions of the NIS 2009 datasets as a function of the query ratio, under the Uniform
(blue circle •), Beta (green star ★), and Gaussian (orange ♦) query distributions.

The first graph we return is sufficient as any other extreme point

configurations whose response set matches RS(D) are either rota-
tions/reflections or contain antipodal pairs. This Algorithm takes

𝑂 (𝑅3 |RS(D) |) time, as it takes 𝑂 (𝑅3 |RS(D) |) time to run Algo-

rithms 9, 1, 2 and 3. Finding antipodal pairs takes 𝑂 (|RS(D) |) and
finding close pairs 𝑂 (𝑅3). Finally, it takes 𝑂 (𝑅4) time to generate

and compare the leakage. We can encode graphs 𝐺 and 𝐺 ′
by their

linear extensions in linear space, and the sets antipodalPairs and
closePairs contain at most 𝑂 (𝑅) points. □

D Estimators

Let D be a database of 𝑅 records and let

𝑀 = {{(𝑡1, 𝐴1), . . . , (𝑡𝑚, 𝐴𝑚) : 𝐴𝑖 ∈ RS(D)}}
be a sample (i.e. multiset) of𝑚 token-response pairs that are leaked

when queries are issued according to an arbitrary distribution. Let

𝑀 be a sample and let 𝑛 denote the size of a subsample 𝐿 ⊆ 𝑀 .

Denote by 𝑑 the number of distinct tokens in a subsample 𝐿 ⊆ 𝑀 .

Definition D.1. [45] Let 𝐿 be a subsample and let 𝑓𝑖 be the number

of search tokens that are observed 𝑖 times in 𝐿. The fingerprint of
a sample 𝐿 is the vector 𝐹 = (𝑓1, 𝑓2, ..., 𝑓𝑛), where |𝐿 | = 𝑛. We can

express the total number of token-response pairs in 𝐿 as𝑛 =
∑𝑛
𝑖=1 𝑖 𝑓𝑖

and the number of observed distinct search tokens as 𝑑 =
∑𝑛
𝑖=1 𝑓𝑖 .

To estimate 𝜌 ≈ 𝜌 , we let 𝐿 be a submultiset of𝑀 comprised of

all token-response pairs that contain the identifiers of the points

whose 𝜌 value we wish to compute. We then use an estimator to

estimate how many unique search tokens are associated with those

record identifiers. We describe three such estimators below.

Chao-Lee.Chao and Lee proposed an estimator that utilizes sample

coverage [8]. The sample coverage 𝐶 of a sample 𝐿 is the sum of

the probabilities of the the token-response pairs that appear in 𝐿.

Knowledge of 𝐶 can then be used to estimate 𝜌 . Chao and Lee use

this approximation in combination with an additive term to correct

estimates of data drawn from skew distributions. Let 𝑝𝑖 be the

probability that a query sampled from the distribution matches the

𝑖-th token-response pair, of the possible 𝑄 =
(𝑁0+1

2

) (𝑁1+1
2

)
token-

response pairs. Let 1𝐿 (𝑖) be the following indicator function: 1𝐿 (𝑖)
equals 1 if the i-th token-response pair is in 𝐿 and 0 otherwise. The

sample coverage 𝐶 of a sample 𝐿 is the sum of the probabilities of

the the token-response pairs that appear in 𝐿: 𝐶 =
∑𝑄

𝑖=1
𝑝𝑖 · 1𝐿 (𝑖) .

Note that 𝐶 = 1 − 𝑓1/𝑛 is a natural estimate for 𝐶 , which can then

be used to estimate 𝜌 ≈ 𝑑/𝐶 . Thus,

𝜌
ChaoLee

=
𝑑

𝐶
+ 𝑛(1 −𝐶)

𝐶
· 𝛾2,

where 𝛾 is an estimate of the coefficient of variation 𝛾 = (∑𝑖 (𝑝𝑖 −
𝑝𝑚𝑒𝑎𝑛)2/𝑄)1/2/𝑝𝑚𝑒𝑎𝑛 and 𝑝𝑚𝑒𝑎𝑛 is the mean of the probabilities

𝑝1, . . . , 𝑝𝑄 .

Shlosser. Shlosser derived an estimator that works well under the

assumption that the sample is large and the sampling fraction is non-

negligible [42]. We used an implementation of Shlosser Estimator

that used a Bernoulli Sampling scheme. This estimator is more

effective for skewed distributions.

Let 𝑞 be the probability with which a token-response pair is

included in the sample. In [42], Shlosser derived the estimator

𝜌
Shloss

= 𝑑 +
𝑓1
∑𝑛
𝑖=1 (1 − 𝑞)𝑖 · 𝑓𝑖∑𝑛

𝑖=1 𝑖 · (1 − 𝑞)𝑖−1 · 𝑓𝑖
.

This estimator rests on the assumption that 𝑞 = 𝑛/𝑄 . As [21]

notes, the Shlosser estimator further rests on the assumption that

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2260

E[𝑓𝑖]/E[𝑓1] ≈ 𝐹𝑖/𝐹1 where 𝐹𝑖 is the number of tokens that appear

𝑖 times in entire database; This assumption isn’t often satisfied in

our setting, but our experiments demonstrate that Shlosser did

comparable to Jackknife in various cases.

Jackknife. The jackknife method was introduced as a technique

for correcting the bias of an estimator [40]. We use the jackknife

estimators described in [2, 3], which have been used for the prob-

lem of estimating the number of unique attributes in a relational

database [21], in database reconstruction [27], and in biology for

the related problem of species estimation. Given a biased estimate,

jackknife estimators use sampling with replacement to estimate

the bias 𝑏𝑖𝑎𝑠 𝑗𝑎𝑐𝑘 , and obtain 𝜌
jack

.

One can view 𝑑 as a biased estimate of the true 𝜌 . Given a biased

estimate 𝑑 , jackknife estimators use sampling with replacement to

estimate the bias 𝑏𝑖𝑎𝑠 𝑗𝑎𝑐𝑘 , and obtain 𝜌
jack

= 𝑑 − 𝑏𝑖𝑎𝑠 𝑗𝑎𝑐𝑘 . Let 𝑑𝑛
denote the number of unique tokens in 𝐿 and let 𝑑𝑛−1 (𝑘) denote

the number of unique tokens in 𝐿 when the 𝑘-th token-response

removed. Note that 𝑑𝑛−1 (𝑘) = 𝑑𝑛 − 1 if and only if the 𝑘-th pair

is unique in 𝐿. Let 𝑑𝑛−1 = (1/𝑛)∑𝑛
𝑘=1

𝑑 (𝑛−1) (𝑘). The first order

jackknife estimator is 𝜌
jack

= 𝑑 − (𝑛 − 1) (𝑑 (𝑛−1) − 𝑑). The second
order jackknife considers all 𝑛 samples generated by leaving one

pair out, in addition to all

(𝑛
2

)
generated by leaving two pairs out.

This method can be extended to an 𝑘-th order jackknife estimators

that generates

∑𝑘
𝑖=1

(𝑛
𝑖

)
samples and has bias 𝑂 (𝑛−𝑘+1).

E Experimental Results
In Figure 12, we show the results of our reconstructions of the

NIS 2009 dataset. Overall, the results follow a similar trend to the

results in Figure 9. There is a decrease in normalized mean error,

mean squared error, and pairwise relative distance error, as a larger

percentage of queries is observed. We also note that the maximum

memory required is fairly constant across all runs.

Session 7C: Database and Privacy CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2261

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Encrypted Databases and 2D Range Queries
	1.3 Comparison with Prior and Related Work

	2 Preliminaries
	2.1 Query Densities

	3 Order and Equivalent Databases
	3.1 Equivalent Databases
	3.2 Chains and Antichains

	4 Overview of Order Reconstruction
	4.1 Proof of Theorem 3.5

	5 Order Reconstruction
	5.1 Preliminaries
	5.2 Find Extreme Points
	5.3 Generate Dominance Graph
	5.4 Construct Antichains
	5.5 Generate Anti-Dominance Graph
	5.6 Order Reconstruction
	5.7 Experiments

	6 Estimating the Query Density Functions
	6.1 Non-parametric Estimators
	6.2 Experiments

	7 Approximate Database Reconstruction
	7.1 Algorithm
	7.2 Datasets and System
	7.3 Accuracy Metrics
	7.4 Experiments
	7.5 Post-processing Adjustment

	8 Conclusion and Future Work Directions
	References
	A Algorithm 8 (DominanceID)
	B Algorithm 9 (FindExtremePairs)
	C Proofs
	C.1 Proof of Proposition 2
	C.2 Proof of Proposition 3
	C.3 Proof of Lemma 5.1
	C.4 Proof of Lemma 5.2
	C.5 Proof of Lemma 5.3
	C.6 Proof of Lemma 5.4
	C.7 Proof of Theorem 5.5

	D Estimators
	E Experimental Results

