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ABSTRACT
In the wake of fraud scandals involving decentralized exchanges

and the significant financial loss suffered by individuals, regula-

tors are pressed to put mechanisms in place that enforce customer

protections and capital requirements in decentralized ecosystems.

Proof of liabilities (PoL) is such a mechanism: it allows a prover

(e.g., an exchange) to prove its liability to a verifier (i.e., a customer).

This paper introduces a fully privacy-preserving PoL scheme

with short proofs. We store the prover’s liabilities in a novel data

structure, the sparse summation Verkle tree (SSVT), in which each

internal node is a hiding vector commitment of its children and

whose root commits to the sum of all the leaves in the tree. We

leverage inner product arguments to prove that a user’s liability

is included in the total liabilities of the prover without leaking

any information beyond the liability’s inclusion. Our construction

yields proofs of size 𝑂 (log𝑛 𝑁 ) where 𝑛 is the arity of the SSVT

and 𝑁 is an upper bound on the number of users. Additionally, we

show how to further optimize the proof size using aggregation. We

benchmark our scheme using an SSVT of size 2
256

and one of size

10
9
that covers the universe of all US social security numbers.
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1 INTRODUCTION
Driven by the promises of decentralization, anonymity, and high

returns, there has been a surge in the popularity of cryptocurren-
cies such as Bitcoin [1] in recent years. The increasing demand

for cryptocurrencies has led to the rise of decentralized exchanges,

marketplaces in which users can purchase, sell, and trade cryp-

tocurrencies. While exchanges offer a user-friendly interface for

lay users to manage their funds, the exchanges are the de-facto

custodians of these funds. This makes users vulnerable to acts of

fraud, the most recent of which is FTX, which is estimated to owe

over 8 billion USD to its creditors and customers [2].

To counter such fraud, users should be assured of exchange

solvency. Exchange insolvency occurs when the total liabilities of

the exchange exceeds its total assets, thereby resulting in a negative

net worth and a higher risk of bankruptcy. To limit the risk of

insolvency, periodic financial audits can be leveraged. Audits are

traditionally conducted by an auditing firm in a centralized manner:

the firm reviews the records of the exchange and ensures that they

are representative of its financial dealings [3]. Centralized audits,

however, carry multiple downsides including cost, time, and lack of

privacy, but most importantly is the fact that the auditor can never

be certain that all the liabilities have been included.

Decentralized audits, on the other hand, allow users to check that

the liability owed to them by an exchange is included in the total

liabilities and that the exchange has enough assets to cover them.

As long as the users conduct an audit, they can be assured that

their liabilities are accounted for. The utility of decentralized audits

is not limited to cryptocurrency exchanges: another prominent

application is Central bank digital currencies (CBDCs). In CBDCs,

commercial banks serve as custodians and hold CBDC on behalf

of users. Given that CBDC is a central-bank money, commercial

banks should guarantee that users can redeem their CBDC at any

time. A decentralized audit allows a user to verify that their CBDC

can be redeemed without actually withdrawing it.

A Proof of liability (PoL) [4] is a cryptographic primitive that

enables a prover to publish its total liabilities and then efficiently

prove to each of its users that their corresponding liability is in-

cluded in the published total. A Proof of Reserves (PoR) is a
cryptographic primitive that enables a prover to prove that it pos-

sesses the assets that they claim. PoL and PoR together form a

Proof of Solvency, a protocol that enables a prover to prove that

its assets are at least as much as the liabilities it owes to its clients.

Considering the growing importance of data privacy and the

ensuing regulations, it is imperative to design PoL and PoR schemes

that can fully protect the privacy of individual users and provers

(i.e, banks, exchanges). Along these lines, we find [5–10], which

propose PoL solutions with varying degrees of privacy. While these

solutions protect the privacy of user data, most fall short of pro-

tecting the prover’s privacy, as they leak the number of users. Ji

and Chalkias [10] manage to hide the number of users but at the

expense of a larger proof size.

We propose a fully privacy-preserving PoL scheme with short

proofs. One of the challenges of designing a PoL scheme is guaran-

teeing privacy to the prover and verifiers, while remaining efficient.

Most prior schemes (e.g. [4–6, 9, 10]) rely on the Merkle-tree, a

binary tree whose inner nodes contain a hash to their respective

children. Though asymptotically efficient, Merkle trees are limited

by their 2-ary structure and covering a user universe of intractable

size can quickly result in impractically long proofs.

To overcome this, we introduce the Sparse Summation Verkle
Tree (SSVT) to hide the number of users while shortening the

authentication path. An SSVT is a modified sparse Merkle tree

in which each internal node contains vector commitments to its

children and whose root contains a commitment to the sum of all

the leaves in the tree. The size of the tree (for the given depth and

arity) may be intractable, yet the tree can be represented compactly

by only storing the nodes along the paths from leaves to root.

By relying on vector commitments, the tree can have arity 𝑛 ≥
2 and short inclusion proofs. Our scheme also benefits from the

short proofs and efficient openings of the vector commitments.

We combine the hiding vector commitments in [11] with inner

product arguments [12] to design tailored zero-knowledge proofs

that allow us to show that the liability to a user is included in the

tree in a privacy-preserving manner. We implement our scheme

in Go and evaluate our scheme using an SSVT of size 2
256

and

one of size 10
9
covering the entire universe of possible US social
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security numbers. Our experiments show that the performance of

our scheme is dominated by the generation and verification of the

range proof, which can fortunately be optimized through proof

aggregation (see Section 7.3) and multi-exponentiation to reduce

the number of exponentiations [12].

We summarize our contributions as follows:

• We describe a fully private PoL scheme with short proofs.

• We introduce a new data-structure, the sparse summation Verkle

tree (SSVT), which is a modified Merkle tree whose internal

nodes contain vector commitments to their respective children

and whose root node contains a commitment to the values of

the leaves of the tree. SSVTs support arity 𝑛 ≥ 2, thus hiding the

total number of users while ensuring short authentication paths

.

• We give a formal security and privacy analysis. We prove that

our scheme offers maximum privacy to both the prover and the

verifiers, leaking only the size of the user universe.

• We describe three new tailor-made and asymptotically-efficient

instantiations of zero-knowledge proofs over vector commit-

ments, including an extension of Bulletproofs [12] to support

range proofs over vector commitments. We further extend these

protocols to support the batching of proofs.

• We support our theoretical results with a prototype implementa-

tion and evaluation on SSVTs of size 2
256

and 10
9
.

1.1 Related Work
We now give an overview of the prior work on PoL. The complexity

and functionality of the PoL schemes is summarized in Table 1.

Maxwell. This scheme [4] uses a summation Merkle tree to gener-

ate proofs of inclusion. Each leaf corresponds to a user and contains

the plaintext balance of that user; each inner node is assigned the

hash of the sum of the values of its children. The scheme, however,

leaks the total liabilities (which is published in the clear), the num-

ber of users (which can be inferred from the height of the tree),

and the balance of the sibling node (when producing the inclusion

proofs). Moreover, the scheme was proved insecure [5].

Maxwell+ and Maxwell++. Hu et al. [5] describe an attack on the

Maxwell scheme that enables a malicious prover to claim a total

liability that is as small as the largest liability owed to a user. They

then introduce a new scheme (which we refer to as Maxwell+) that

mitigates this attack by modifying the Maxwell scheme as follows.

Each inner node is assigned the hash of the sum of the children’s

values concatenated with the hashes of the children. This scheme

still leaks the total liabilities, the number of users, and the balance

of the sibling nodes on the authentication path.

Chalkias et al. [6] present the Maxwell++ scheme that modifies

the Maxwell+ scheme by randomly splitting each user’s balance

and then mapping each fraction to a different leaf in the Merkle

tree. This somewhat hides the number of users and their balances

at the expense of larger proof size and longer verification time.

Camacho. Camacho’s scheme [7] modifies the Maxwell scheme [4]

by replacing the plaintext value of each node in Maxwell with

a Pedersen commitment to the value. Let Commit(ℓ, 𝑟 ) denote a
commitment to value ℓ with blinding factor 𝑟 . By the homomor-

phism property of Pedersen commitments, one can compute the

sum of the two child values by multiplying the commitments, i.e.

Commit(ℓ0, 𝑟0) ·Commit(ℓ1, 𝑟1) = Commit(ℓ0 + ℓ1, 𝑟0 + 𝑟1). Accord-
ingly, a proof of inclusion for a particular user, corresponds to the

commitments in the authentication path and the opening of the

commitment at the root. The authentication path is valid if the

commitment at each node in the path is the product of the com-

mitments of its children. To ensure that the liabilities along the

authentication path are not negative, Camacho uses range proofs.

However, since each node stores only a commitment to the sum of

the children, the Camacho scheme suffers from the same security

flaw as the original Maxwell scheme. That is, a malicious prover

can claim smaller total liabilities equaling the largest liability owed

to a single user.

Provisions. Provisions [8] uses a combination of Pedersen commit-

ments and zero knowledge proofs to construct a proof of solvency.

Provisions follows a flat-list approach, inwhich the prover publishes

a list of Pedersen commitments of both the assets and individual

liabilities. It hides the number of users by adding dummy commit-

ments to the published list. The proof of assets scales linearly with

the size of the public keys associated with the prover, whereas the

proof of liabilities scales linearly with the number of users. It is

possible for Provisions to leverage Merkle trees to reduce the size

of the published data from linear in the number of users to con-

stant. However, an upper bound of the total number of users is still

exposed, and a logarithmic number of range proofs are required,

which can be expensive for both the prover and the users, even

when using efficient ZKP schemes such as Bulletproofs [12].

DAPOL. DAPOL [9] enhances the Camacho scheme [7] by using a

sparse Merkle tree (SMT) and the fix proposed in [5] i.e., a node in

the tree additionally comprises the hash of its children. The SMT

helps hide the total number of users; each user is randomly assigned

to a node in the bottom layer, and the SMT is then built from the

bottom layer up, ensuring that each node has either zero or two

children. Nodes that are not mapped to a user or nodes without

children are called padding nodes. As Ji and Chalkias [10] note, the

hash stored in the padding node is deterministic, making it possi-

ble for participants that request proofs of liability to distinguish

between padding nodes and other nodes and, consequently, bound

the total number of users.

DAPOL+. In [10], Ji and Chalkias introduce DAPOL+, which fixes

the padding issue in DAPOL. Notably, the padding nodes are now

each assigned a Pedersen commitment to 0 and a hash of the node in-

dex concatenated with a mask. Additionally, Ji and Chalkias formal-

ize the notion of PoL security and privacy, and show that DAPOL+

satisfies these definitions.

BothDAPOL andDAPOL+ use SMTs as the underlying data struc-

ture. In SMTs that are not sufficiently large, one must be careful

when assigning users to leaves since the probability of randomly as-

signing two users to the same node is non-negligible. To get around

this issue, both schemes introduce complex assignment procedures

such as verifiable random functions (DAPOL) or ORAM-based SMTs

(DAPOL+). Proving privacy would require further arguing that the

order in which the users are inserted does not affect the resulting

tree. On the other hand, if the SMTs are of intractable size, then

the schemes would suffer from longer authentication paths and

verification time (since the trees are only 2-ary).
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Table 1: A summary of prior PoL schemes and our scheme. Let 𝑁 be the size of the user universe and 𝑘 be the number of existing
users. For Maxwell++ [6] 𝑠 denotes the average number of units that each user is split into and for Provisions [8] 𝑏 denotes the
size of the anonymity set. By default, a log term without a base is in base 2. We denote by 𝑛 the arity of the tree. With respect to
privacy, # indicates that the property is leaked, G# that it is partially hidden, and  that it is hidden.

Security Privacy Complexity
Vulnerability

on Scheme

Total

Liab.

Total

Users

User

Liab.

User Inclusion

Proving Time

User Inclusion

Verification Time

Proof Size

of User Inclusion

Commitment

Size on PBB

Maxwell [4] [5] # # # 𝑂 (1) 𝑂 (log𝑘 ) 𝑂 (log𝑘 ) 𝑂 (1)
Maxwell+ [5] – # # # 𝑂 (1) 𝑂 (log𝑘 ) 𝑂 (log𝑘 ) 𝑂 (1)
Maxwell++ [6] – # G# G# 𝑂 (𝑠 ) 𝑂 (log(𝑘 · 𝑠 ) ) 𝑂 (log(𝑘 · 𝑠 ) ) 𝑂 (1)
Camacho [7] [5]  #  𝑂 (log𝑘 ) 𝑂 (log𝑘 ) 𝑂 (log𝑘 ) 𝑂 (1)
Provisions [8] –  G#  𝑂 (𝑘 + 𝑏 ) 𝑂 (𝑘 + 𝑏 ) 𝑂 (1) 𝑂 (𝑘 + 𝑏 )
DAPOL [9] [10]  G#  𝑂 (log𝑁 ) 𝑂 (log𝑁 ) 𝑂 (log𝑁 ) 𝑂 (1)

DAPOL+ [10] –    𝑂 (log𝑁 ) 𝑂 (log𝑁 ) 𝑂 (log𝑁 ) 𝑂 (1)
This Work –    𝑂 (log𝑛 𝑁 ) 𝑂 (log𝑛 𝑁 ) 𝑂 (log𝑛 𝑁 ) 𝑂 (1)

1.2 Notation
Let [𝑛] denote the set of integers {0, 1, . . . , 𝑛 − 1} and [𝑚..𝑛] the set
of integers {𝑚,𝑚 + 1, ..., 𝑛 − 1}. For some set 𝑆 , let 𝑥←$ 𝑆 denote

the random sampling of an element 𝑥 from 𝑆 .

Given a map𝑀 , the set of corresponding keys𝐾 , and a set 𝑆 ⊆ 𝐾 ,
𝑀 [𝑆] denotes the restriction of𝑀 to 𝑆 , i.e., the map with keys in 𝑆 .

We take G to be a cyclic group of prime order 𝑝 and Z𝑝 to be

the ring of integers modulo 𝑝 . Lower-case letters are reserved for

elements in Z𝑝 , whereas upper-case letters denote elements in G.
Let G𝑛 and Z𝑛𝑝 be the vector spaces of dimension 𝑛 over G and

Z𝑝 , respectively. We denote vectors using bold font, e.g. v ∈ Z𝑛𝑝
represents an 𝑛-dimensional vector with elements in Z𝑝 .

Given a vector v = (𝑣0, . . . , 𝑣𝑛−1) ∈ Z𝑛𝑝 , we use v[𝑖] to denote

the element at index 𝑖 (i.e., v[𝑖] = 𝑣𝑖 ), v[:𝑚] to denote sub-vector

(v0, ..., v𝑚−1), and v[𝑚 :] to denote sub-vector (v𝑚, ..., v𝑛−1) for
integer𝑚 < 𝑛. More generally, for any ordered set 𝑆 = {𝑖1, ..., 𝑖𝑚} ⊆
[𝑛], we denote by v[𝑆], the sub-vector (𝑣𝑖1 , ..., 𝑣𝑖𝑚 ).

Note that we use the same notation to index vectors in G𝑛 .
Given vectors v andw of lengths𝑛 and𝑚, respectively, we denote

by v∥w the concatenation of vectors to form a new vector of length

𝑛 +𝑚. Given vectors v,w ∈ Z𝑛𝑝 , let v · w =
∑𝑛−1
𝑖=0 𝑣𝑖𝑤𝑖 denote the

inner product of v and w. For vectors G = (𝐺0, . . . ,𝐺𝑛−1) ∈ G𝑛
and v = (𝑣0, . . . , 𝑣𝑛−1) ∈ Z𝑛𝑝 , let Gv =

∏𝑛−1
𝑖=0 𝐺

𝑣𝑖
𝑖
∈ G. Note that if

for all 𝑖 ≠ 𝑗 , the discrete logarithm of𝐺𝑖 relative to𝐺 𝑗 is unknown,

then Gv
is a binding Pedersen commitment to vector v.

2 PROOF OF LIABILITIES (POL)
2.1 Entities
A PoL scheme is an organization-level regulation mechanism that

involves two entities: the users (who use the organization’s services)

and the prover (who operates on behalf of the organization).

• Users: The set of usersU are the parties who store their assets

with the organization.

• Prover: The prover P operates on behalf of the organization and

is the entity liable to the users. The prover’s goal is to prove to

users that P’s liabilities to them are included in the total.

2.2 Formalizing PoL
Definition 1 ([10]). A proof of liability (PoL) scheme is a tuple

of algorithms PoL = (Setup, ProveTot, VerifyTot, Prove, Verify) with
the following syntax.
• (𝑃𝐷, 𝑆𝐷)←$ Setup(1𝜅 , 𝐷𝐵) is a probabilistic polynomial-time al-

gorithm executed by P that takes as input a security parameter 𝜅
and a database 𝐷𝐵 = {(𝑖𝑑𝔲, ℓ𝔲)}𝔲∈U , comprising of an identifier-
liability pair for each user 𝔲 ∈ U. It outputs public data 𝑃𝐷 and
secret data 𝑆𝐷 only known to P.

• (Π, 𝐿) ← ProveTot(𝐷𝐵, 𝑆𝐷) is a polynomial-time algorithm ex-
ecuted by P at the behest of an authorized auditor if the scheme
calls for one. It takes as input the database 𝐷𝐵 and P’s secret data
𝑆𝐷 . It outputs the total liability 𝐿 and associated proof Π.
• 𝑏 ← VerifyTot(𝑃𝐷, 𝐿,Π). Given the total liabilities 𝐿 and its asso-

ciated proof Π, an authorized auditor can inspect the validity of 𝐿
according to the public data 𝑃𝐷 . The polynomial-time algorithm
returns 1 if the verification succeeds and 0 otherwise.

• 𝜋 ← Prove(𝐷𝐵, 𝑆𝐷, 𝑖𝑑) is a polynomial time algorithm executed
by P. It takes as input the database 𝐷𝐵, P’s secret data 𝑆𝐷 , and
a user ID 𝑖𝑑 . It outputs a proof 𝜋 indicating the inclusion of P’s
liabilities to the user in the total liabilities.

• 𝑏 ← Verify(𝑃𝐷, 𝑖𝑑, ℓ, 𝜋) is a polynomial-time algorithm executed
by the user. It takes as input the public data 𝑃𝐷 , the user’s ID 𝑖𝑑 ,
P’s liabilities to the user ℓ , and the associated proof of inclusion 𝜋 .
It returns 1 if verification succeeds and 0 otherwise.

2.3 Threat Model
One important aspect that characterizes the PoL problem is that

the prover P has no incentive to increase its total liabilities. On

the contrary, P may be inclined to lower its total liabilities, for

example, by claiming less liabilities to an honest user or removing

its liabilities to the user entirely.

A user 𝔲 ∈ U may collude with an adversary that wishes to

learn the liabilities to honest users or the number of users using

P’s services. We assume that all communication between U and

P are authenticated. Notably, an honest P answers requests only

from authorized users and shares the proofs of liabilities only with

the intended users.
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Throughout the paper, we make use of a public bulletin board

(PBB) that provides the same view to all entities (i.e., consensus).
The PBB may be instantiated using a blockchain. The public data

𝑃𝐷 computed at setup is published to the PBB, ensuring that all

users inU have the same view of 𝑃𝐷 .

2.4 Security of PoL
Valid databases. We start by defining the validity of a database.

Definition 2 ([10]). LetU be a set of users and let 𝑁,𝑚𝑎𝑥 ∈ N.
A database 𝐷𝐵 = {(𝑖𝑑𝔲, ℓ𝔲)}𝔲∈U is (𝑁,𝑚𝑎𝑥)-valid if and only if
the following three conditions hold:
(1) there are at most 𝑁 users, i.e. |𝐷𝐵 | ≤ 𝑁 ;
(2) for any two distinct users 𝔲, 𝔲′ ∈ U, 𝑖𝑑𝔲 ≠ 𝑖𝑑𝔲′ ;
(3) for all 𝔲 ∈ U, 0 ≤ ℓ𝔲 < 𝑚𝑎𝑥 .

Completeness. Completeness guarantees that when a PoL scheme

is executed by honest parties on correct inputs, the verification

algorithms succeed with probability 1.

Definition 3 ([10]). APoL scheme is complete if for any (𝑁,𝑚𝑎𝑥)-
valid database 𝐷𝐵 = {(𝑖𝑑𝔲, ℓ𝔲)}𝔲∈U ,

Pr



VerifyTot(𝑃𝐷, 𝐿,Π) = 1∧
∀𝔲 ∈ U,Verify(𝑃𝐷, 𝑖𝑑𝔲, ℓ𝔲, 𝜋𝔲) = 1

𝐿 ≥ ∑
𝔲∈U ℓ𝔲 :

(𝑃𝐷, 𝑆𝐷)←$ Setup(1𝜅 , 𝐷𝐵),
(𝐿,Π) ← ProveTot(𝐷𝐵, 𝑆𝐷),
∀𝔲 ∈ U, 𝜋𝔲 ← Prove(𝐷𝐵, 𝑆𝐷, 𝑖𝑑𝔲)


= 1.

Soundness. Intuitively, soundness guarantees that a malicious

prover P cannot produce public data 𝑃𝐷 and a valid proof 𝜋𝔲 in a

way that reduces P’s liability to 𝔲, except with negligible probability.
Soundness implies that a malicious prover succeeds in convincing

honest users of the validity of their proof of liability while simul-

taneously claiming a total liability that is smaller than the sum of

liabilities to these users, only with a negligible probability.

Definition 4 ([10]). A PoL scheme is sound if for any (𝑁,𝑚𝑎𝑥)-
valid database 𝐷𝐵 = {(𝑖𝑑𝔲, ℓ𝔲)}𝔲∈U , and for any p.p.t. adversarial
proverA∗ potentially colluding with any number of users there exists
a negligible function 𝜖 (·) such that for any subset of honest usersU∗:

Pr


VerifyTot(𝑃𝐷, 𝐿,Π) = 1∧

∀𝔲 ∈ U∗,Verify(𝑃𝐷, 𝑖𝑑𝔲, ℓ𝔲, 𝜋𝔲) = 1∧
𝐿 <

∑
𝔲∈U∗ ℓ𝔲 :

(𝑃𝐷, 𝐿,Π, {𝜋𝔲}𝔲∈U∗ )←$A∗ (1𝜅 , 𝐷𝐵)

 ≤ 𝜖 (𝜅) .
The notion of soundness is defined with respect to the honest

users who check their proof of liability. A malicious prover can

reduce or remove the liability to an honest user and evade detection

if that user never requests a proof of liability. The more users that

verify their liability, the harder it is for the prover to cheat.

Security. A secure PoL scheme should satisfy both completeness

and soundness.

Definition 5. A PoL scheme is secure if it is complete and sound.

2.5 Privacy of PoL
Similarly to [10], we define privacy with respect to the view of a

subset of malicious usersM ⊆ U. We assume that some adversary

has gained control of a subset of users and wishes to infer as much

information about the honest users as possible. It is thus important

to characterize the exact leakage to the malicious users with the

goal of understanding the potential risks. Let L denote the leakage

function of the PoL scheme. By way of illustration, a fully privacy-

preserving PoL has a leakage of L = ∅, whereas a non-privacy

preserving PoL has a leakage of L = 𝐷𝐵. Finally, the leakage of a

PoL scheme that reveals the number of users is L = |𝐷𝐵 |.

Definition 6 ([10]). A PoL scheme is L-private against a subset
of malicious usersM ⊆ U, if there exists a p.p.t. simulatorS such that
for any (𝑁,𝑚𝑎𝑥)-valid database 𝐷𝐵, the following two distributions
are computationally indistinguishable:
(1) {𝑃𝐷, 𝐷𝐵 [M], {𝜋𝔲}𝔲∈M : (𝑃𝐷, 𝑆𝐷)←$ Setup(1𝜅 , 𝐷𝐵)},
∀𝔲 ∈ M, 𝜋𝔲 ← Prove(𝐷𝐵, 𝑆𝐷, 𝑖𝑑𝔲)}

(2) {S(1𝜅 , 𝐷𝐵 [M],L)}
where L is the leakage function.

3 SCHEME OVERVIEW
Sparse Verkle Trees. The starting point of our PoL is a sparse
Verkle tree, which is an authenticated data structure of intractable

size (usually, 2
128

) [13]. Each inner node of the Verkle tree is com-

puted as a vector commitment to its children. Sparse Verkle trees

enjoy the property of history independence [14, 15] i.e., the order in
which elements are inserted has no effect on the value of the root.

Let T𝑛,𝑑 be a sparse Verkle tree of arity 𝑛 and depth 𝑑 . We now

provide a high-level description of our PoL scheme. We first map

the liability to each user to a leaf in T𝑛,𝑑 , and store in each internal

node two vector commitments ⟨𝑉 ,𝑊 ⟩. At depth𝑑−1,𝑉 is the vector

commitment of the liabilities of the leaves and their sum while𝑊 is

empty. At depth 𝑖 ∈ [𝑑 − 1], 𝑉 commits to (𝑣0, ..., 𝑣𝑛) where for all
𝑗 ∈ [𝑛], 𝑣 𝑗 is the sum of the values committed in the 𝑉 component

of the 𝑗 th child, and 𝑣𝑛 is the sum of values (𝑣0, ..., 𝑣𝑛−1).𝑊 , on

the other hand, commits to (𝑤0, ...,𝑤𝑛−1) where for all 𝑗 ∈ [𝑛],
𝑤 𝑗 is the hash of the content of the 𝑗 th child. This construction

corresponds to a summation Verkle tree: the 𝑉 component of the

root commits to vector (𝑣0, ..., 𝑣𝑛) with 𝑣𝑛 being the sum of all the

values stored in the non-empty leaves.

Privacy.We use hiding vector commitments to guarantee that ac-
cessing the content of the nodes on an authentication path does not

leak information about the liabilities. To ensure that the authenti-

cation paths are well formed without disclosing any information

about the liabilities, we leverage zero-knowledge arguments.
Let 𝔲 be a user requesting a proof of liability and ℓ its liability.

Let (⟨𝑉𝑑−1,𝑊𝑑−1⟩, ..., ⟨𝑉0,𝑊0⟩) be the content of the nodes from
the leaf associated with 𝔲 to the root (root included). ⟨𝑉𝑑−1,𝑊𝑑−1⟩
is the parent of the leaf and ⟨𝑉0,𝑊0⟩ is the root of the tree.

Prover P’s goal is to first show that 𝑉𝑑−1 commits to ℓ at the

expected index, and that the last element committed in 𝑉𝑑−1 is the
sum of all the children’s liabilities. We recall that𝑊𝑑−1 is empty.

Next, for all nodes at depth 𝑑 − 2 ≤ 𝑖 ≤ 0, P must prove that

(1)𝑊𝑖 commits to the hash of ⟨𝑉𝑖+1,𝑊𝑖+1⟩; (2) 𝑉𝑖 commits to the

sum encoded in 𝑉𝑖+1; (3) and the last element committed in 𝑉𝑖 is

the sum of the previous elements in the vector. Since (𝑊0, ...,𝑊𝑑−1)
encodes public information, their respective proofs can be computed

following the algorithms of the underlying vector commitment (i.e.,
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no need for zero-knowledge arguments). In the case of (𝑉0, ...,𝑉𝑑−1),
we ought to demonstrate in zero-knowledge that for all 𝑖 ∈ [𝑑 − 1]
(1) the last element of the vector committed in 𝑉𝑖 is the sum of

the previous elements (sum argument over vector commit-
ments);

(2) the last element committed in 𝑉𝑖+1 opens 𝑉𝑖 at a position de-

termined by the index of the leaf storing ℓ (opening equality
argument over vector commitments).

Additionally, to prevent the prover from injecting negative values

in the vector commitments and bringing its total liabilities down,

we use range proofs to ensure that all the values committed in 𝑉𝑖
are in range [2𝑚], for some predefined value𝑚.

Optimizations. Plugging existing range proofs [12] directly into

our construction incurs 𝑂 (𝑑𝑛 log(𝑚)) communication complexity,

voiding the communication savings due to sparse Verkle trees. In

Section 6.5, we propose a new range proof over vector commit-
ments that lowers the communication cost from 𝑂 (𝑑𝑛 log(𝑚)) to
𝑂 (𝑑 log(𝑛𝑚)).

We further optimize our scheme through the aggregation of the

opening equality arguments, sum arguments, and range proofs

along the authentication path. Aggregating the opening equality ar-

guments reduces the number of pairings performed during verifica-

tion and the size of the proof. More cost effective is the aggregation

of the sum arguments. This decreases the size of the proof from

𝑂 (𝑑 log(𝑛)) to log(𝑛) and the complexity of the proof generation

and verification from 𝑂 (𝑑𝑛) to 𝑂 (𝑑 + 𝑛). Finally, the aggregation
of the range proofs further lowers the communication cost of the

range proofs from 𝑂 (𝑑 log(𝑛𝑚)) to 𝑂 (log(𝑑𝑛𝑚)).
Security and privacy guarantees. The soundness of our PoL

scheme directly follows from the binding property of the vector

commitments and the soundness of the opening equality and sum

arguments and range proofs. Additionally, the hiding property of

the vector commitments and the zero-knowledge property of the

arguments guarantee the privacy of user liabilities. Finally, the

history independence of the sparse Verkle tree ensures that our

construction do not leak any information about the size of the

prover’s database.

4 CRYPTOGRAPHIC BUILDING BLOCKS

In this section, we introduce the syntax of the cryptographic

building blocks that our PoL scheme makes use of. The implemen-

tations can be found in Section 6.

4.1 Sparse Summation Verkle Trees
We present a novel data structure called the sparse summation

Verkle tree (SSVT). It builds upon the sparse Verkle tree, which

is an authenticated data structure of intractable size whose inner

nodes contain a vector commitment to the hash of its children.

Because the inner nodes utilize a vector commitment, Verkle trees

can have arity 𝑛 ≥ 2 and therefore smaller inclusion proofs than

their Merkle tree counterparts.

Definition 7. A sparse summation Verkle tree (SSVT) T𝑛,𝑑
of arity 𝑛 and depth 𝑑 is an authenticated data structure based on
a full Verkle tree of fixed size 𝑛𝑑 . Each inner node stores two vector
commitments, 𝑉 and𝑊 :

• 𝑉 is a vector commitment to an 𝑛 + 1 length vector v such that
v[𝑖] for 𝑖 ∈ [0, 𝑛 − 1] corresponds to the 𝑖-th child’s value and
v[𝑛] = ∑𝑛−1

𝑖=0 v[𝑖].
• 𝑊 is a vector commitment to an 𝑛 length vector w such that if the

children are also inner nodes then w[𝑖] stores the hash of the 𝑖-th
child’s vector commitments. Otherwise it is empty.

See Figure 1 for an example. By construction, VCs [11, 16, 17]

result in constant proofs of inclusion and, thus, authentication paths

in an SSVT only grow with the depth 𝑑 of the tree. That is, the

proof Ω that a value 𝑣 opens a vector commitment𝑉 at index 𝑖 does

not depend on the size of the committed vector. Moreover, because

VCs are easily and efficiently updatable, so are SSVTs.

Sparse Verkle trees, like sparse Merkle trees, are history indepen-

dent. A data structure is history independent if any two sequences
𝑆1 and 𝑆2 that yield the same content induce the same distribution

on the memory representation [14]. In other words, a set of values

produce a deterministic sparse Verkle tree root digest, regardless

of the order in which the values have been inserted.

4.2 Hiding Vector Commitments
A vector commitment [16] is a primitive that commits to an ordered

sequence of values in such a way that one can open a value at a

given index concisely (i.e., using a constant-size proof)
1
. A vector

commitment is hiding if it does not leak any information about the

committed vector.

Definition 8. A hiding vector commitment comprises four
algorithms VC = (ParamGen,Commit,Open,VerOpen) with the
following syntax.
• ppVC ← ParamGen(1𝜅 , 𝑛) takes as input the security parameter
𝜅 and the size of the vectors to be committed 𝑛 = poly(𝜅) and
outputs public parameters ppVC.

• 𝑉 ← Commit(ppVC, v, 𝑟 ) takes as input public parameters ppVC,
vector v ∈ Z𝑛𝑝 , randomness 𝑟 , and outputs a commitment 𝑉 .

• Ω ← Open(ppVC, 𝑖, v, 𝑟 ) takes as input public parameters ppVC,
an index 𝑖 ∈ [𝑛], a vector v, randomness 𝑟 and outputs a proof Ω.

• 𝑏 ← VerOpen(ppVC,𝑉 , 𝑖, 𝑣,Ω) takes as input public parameters
ppVC, a commitment 𝑉 , an index 𝑖 , an element 𝑣 , and a proof Ω
and outputs a bit 𝑏. If 𝑏 = 1, then 𝑉 is a commitment to a vector v
such that 𝑣 = v[𝑖]; otherwise, 𝑏 = 0.

A hiding vector commitment must be binding, that is, the proba-
bility thatVerOpen(ppVC,𝑉 , 𝑖, 𝑣,Ω) = VerOpen(pp𝑉𝐶 ,𝑉 , 𝑖, 𝑣 ′,Ω′) =
1 such that 𝑣 ≠ 𝑣 ′ must be negligible.

4.3 Arguments of Knowledge
Definition 9. A ternary relation R is defined by a set of triples

(pp,x,w) where pp is called the public parameters, x the instance,
andw the witness.LR = {(pp,x) : ∃w s.t. (pp,x,w) ∈ R} is called
the language of relation R.

Definition 10 (Interactive Arguments of Knowledge). Let
(G,P,V) be three algorithms defined as follows.
• Generator G takes as input security parameter 1𝜅 and relation R

and outputs public parameters pp.

1
To reveal the value of an index in a Pedersen commitments, one must produce a proof

linear in the size of the vector.
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• Prover P and VerifierV are interactive algorithms. P takes as
input pp, x andw, whereasV takes as input pp and x. We denote
by tr← ⟨P(pp,x,w),V(pp,x)⟩ the transcript of the interaction
between P andV. At the end of its interaction with P,V outputs a
bit 𝑏 = ⟨P(pp,x,w),V(pp,x)⟩. 𝑏 = 1 indicates that tr is accepted
byV; otherwise, tr is rejected.
The triple (G,P,V) defines an interactive argument of knowledge

if the following properties are met.
• Completeness. (G,P,V) is complete iff for all adversaries A:

Pr


(pp,x,w) ∉ R

∨
⟨P(pp,x,w),V(pp,x)⟩ = 1

pp← G(1𝜅 ,R)
(x,w) ← A(pp)

 = 1 .

• Knowledge Soundness. (G,P,V) is knowledge-sound iff for all
adversaries A there exists an extractor E such that:

Pr


(pp,x,w) ∉ R

∧
⟨A(st,x),V(pp,x)⟩ = 1

pp← G(1𝜅 ,R)
(st,x) ← A(pp)
w← EA(st,x) (pp)

 ≤ negl(𝜅) .

Definition 11 (Public-Coin InteractiveArguments of Knowl-

edge). An interactive argument of knowledge (G,P,V) is public coin
if all messages thatV sends to P are generated uniformly at random.

A public-coin interactive argument of knowledge (G,P,V) is
zero-knowledge if: tr← ⟨P(pp,x,w),V(pp,x)⟩ does not leak any
information about witnessw. More formally:

Definition 12 (Zero-knowledge). (G,P,V) is zero-knowledge
iff for all adversaries A, there exists a polynomial-time simulator S
such that the following holds:

Pr


(pp,x) ∈ LR

∧
A(tr) = 1

pp← G(1𝜅 ,R)
(x,w, 𝑟 ) ← A(pp)

tr← ⟨P(pp,x,w),V(pp,x; 𝑟 )⟩


≈ Pr


(pp,x) ∈ LR

∧
A(tr) = 1

pp← G(1𝜅 ,R)
(x,w, 𝑟 ) ← A(pp)
tr← S(pp,x, 𝑟 )

 .

where 𝑟 is the public-coin randomness thatV uses during its interac-
tions with P.

In the random oracle model (ROM), public-coin interactive (zero-

knowledge) arguments of knowledge can be transformed into non-

interactive arguments via the Fiat-Shamir heuristic [18]. In this

case, the arguments of knowledge are defined by triple (G,P,V),
such that: G(1𝜅 ,R) outputs the public parameters pp that contain a

description of a hash function; P(pp,x,w) outputs a proof Π; and
V(pp,x,Π) outputs a bit 𝑏, where 𝑏 = 1 indicates that Π is valid.

Our PoL scheme makes use of non-interactive variants of public-

coin interactive arguments.

4.4 Opening Equality Argument over Vector
Commitments

An opening equality argument is a zero-knowledge argument of

knowledge that allows a prover to show that two hiding vector
commitments 𝑉 and𝑊 open to the same value 𝑣 at indices 𝑖 and 𝑗 ,

respectively.

Definition 13. Given hiding vector commitment scheme VC
with public parameters ppVC, an opening equality argument

ℓ00

𝑉! = com(ℓ!!, 0, ℓ!", ℓ!! + ℓ!") 𝑉# = com(0,0,0,0)

𝑉$ = com(ℓ!! + ℓ!", 0, ℓ"!, ℓ!! + ℓ!" + ℓ"!)

ℓ!"

𝑊! = ⊥ 𝑊# = ⊥

𝑊$ = com(𝐻(𝑉!,𝑊!), 𝐻(𝑉#,𝑊#), 𝐻(𝑉",𝑊"))

0 ℓ"!

𝑉" = com(ℓ"!, 0,0, ℓ"!)

𝑊" = ⊥

00

𝟎 𝟏 𝟐

𝝐

𝟎𝟏 𝟎𝟐𝟎𝟎 𝟐𝟐𝟐𝟏𝟐𝟎

Figure 1: An example of an SSVT T3,2 such that 𝑆 =

{00, 02, 20} ⊆ [3]2. The blue nodes denote Tree(𝑆), which corre-
sponds to the paths from the root to the leaves identifiedwith
labels in 𝑆 . The gray nodes denote Frontier(𝑆) (i.e., padding
nodes), which correspond to nodes that are not in T3,2 but
whose parents are. Nodes leading to the root are labeled with
a value in [3], whereas a leaf is labeled with value in [3]2 e.g.,
the children of node 0 are labeled 00, 01 and 02.

OEA = (GOEA,POEA,VOEA) for VC is a zero-knowledge argument
of knowledge for the following relation:

x = (𝑉 ,𝑊 , 𝑖, 𝑗) ; w = (𝑣,Ω,Ω′) :

VerOpen(ppVC,𝑉 , 𝑖, 𝑣,Ω) = VerOpen(ppVC,𝑊 , 𝑗, 𝑣,Ω′) = 1.

4.5 Sum Argument over Vector Commitments
Given a hiding vector commitment 𝑉 , a sum argument is a zero-

knowledge argument of knowledge that allows a prover to demon-

strate that the last element of the vector committed in𝑉 is the sum

of all the previous elements.

Definition 14. Given hiding vector commitment scheme VC with
public parameters ppVC, a sum argument SA = (GSA,PSA,VSA)
for VC is a zero-knowledge argument of knowledge for the following
relation:

x = 𝑉 ; w = (v, 𝑟 ) ∈ Z𝑛𝑝 × Z𝑝 :

𝑉 ← Commit(ppVC, v, 𝑟 ) ∧ v[𝑛 − 1] =
𝑛−2∑︁
𝑖=0

v[𝑖] .

4.6 Range Proofs over Vector Commitments
Given a hiding vector commitment 𝑉 , a range proof enables a

prover to show in zero-knowledge that the elements of vector v
committed to in 𝑉 fall into a particular range. In our PoL scheme,

we are interested in showing that 0 ≤ v[𝑖] < 𝑚𝑎𝑥 , where𝑚𝑎𝑥 is

an upper-bound of individual liabilities that a PoL prover can hold.

Definition 15. Given hiding vector commitment scheme VC with
public parameters ppVC, a range proof RP = (GRP,PRP,VRP) for
VC and range [0,𝑚𝑎𝑥] is a zero-knowledge argument of knowledge
for the following relation:

x = 𝑉 ; w = (v, 𝑟 ) ∈ Z𝑛𝑝 × Z𝑝 :

𝑉 ← Commit(ppVC, v, 𝑟 ) ∧ 0 ≤ v[𝑖] < 𝑚𝑎𝑥, ∀𝑖 ∈ [𝑛] .
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Let ppVC ← ParamGen(1𝜅 , 𝑛 + 1) be the public parameters of a hiding vector commitment scheme VC.
Let ℎ be a collision-resistant hash function ℎ : {0, 1}∗ → [𝑛]𝑑 .

1: Setup(1𝜅 , 𝐷𝐵)→ (𝑆𝐷, 𝑃𝐷 )
2: 𝑆𝐷 ← [·] ⊲ empty map

3: 𝑆 ← ∅
4: for (ℓ, 𝑖𝑑 ) ∈ 𝐷𝐵 do
5: 𝑆 ← 𝑆 ∪ {ℎ (𝑖𝑑 ) } ⊲ Append ℎ (𝑖𝑑 ) to 𝑆
6: for 𝜆 ∈ Frontier(𝑆 ) do
7: if 𝜆 = 𝜆1 ...𝜆𝑑 then
8: 𝑆𝐷 [𝜆] ← 0

9: else if 𝜆 = 𝜆1 ...𝜆𝑑−1 then
10: 𝑟←$ Z𝑝
11: 𝑉 ← Commit(ppVC, 0n+1, 𝑟 )
12: 𝑆𝐷 [𝜆] ← ⟨𝑉 ,⊥, 0n+1,⊥, 𝑟 , 0⟩
13: else
14: (𝑟, 𝑠 )←$ Z2𝑝
15: 𝑉 ← Commit(ppVC, 0n+1, 𝑟 )
16: 𝑊 ← Commit(ppVC, 0n+1, 𝑠 )
17: 𝑆𝐷 [𝜆] ← ⟨𝑉 ,𝑊 , 0n+1, 0n+1, 𝑟 , 𝑠 ⟩
18: for 𝜆 ∈ Tree(𝑆 ) do
19: if 𝜆 = 𝜆1 ...𝜆𝑑 then
20: find (𝑖𝑑, ℓ ) ∈ 𝐷𝐵 : 𝜆 = ℎ (𝑖𝑑 )
21: 𝑆𝐷 [𝜆] ← ℓ

22: else if 𝜆 = 𝜆1 ...𝜆𝑑−1 then
23: for 0 ≤ 𝑖 ≤ 𝑛 − 1 do
24: 𝑣𝑖 ← 𝑆𝐷 [𝜆 ∥ 𝑖 ]
25: v← (𝑣0, ..., 𝑣𝑛−1,

∑𝑛−1
𝑗=0 𝑣𝑖 )

26: 𝑟←$ Z𝑝
27: 𝑉←$ Commit(ppVC, v, 𝑟 )
28: 𝑆𝐷 [𝜆] ← ⟨𝑉 ,⊥, v,⊥, 𝑟 , 0⟩
29: else
30: for 0 ≤ 𝑖 ≤ 𝑛 − 1 do
31: ⟨𝑉𝑖 ,𝑊𝑖 , v𝑖 ,w𝑖 , 𝑟𝑖 , 𝑠𝑖 ⟩ ← 𝑆𝐷 [𝜆 ∥ 𝑖 ]
32: 𝑣𝑖 ← v𝑖 [𝑛]
33: 𝑤𝑖 ← ℎ (𝑉𝑖 ,𝑊𝑖 )
34: v← (𝑣0, ..., 𝑣𝑛−1,

∑𝑛−1
𝑗=0 𝑣𝑖 )

35: w← (𝑤0, ..., 𝑤𝑛−1 )
36: (𝑟, 𝑠 )←$ Z2𝑝
37: 𝑉 ← Commit(ppVC, v, 𝑟 )
38: 𝑊 ← Commit(ppVC,w ∥ 0, 𝑠 )
39: 𝑆𝐷 [𝜆] ← ⟨𝑉 ,𝑊 , v,w, 𝑟 , 𝑠 ⟩
40: ⟨𝑉0,𝑊0, v0,w0, 𝑟0, 𝑠0 ⟩ ← 𝑆𝐷 [𝜀 ]
41: 𝑃𝐷 ← ⟨𝑉0,𝑊0 ⟩
42: return (𝑆𝐷, 𝑃𝐷 )

Figure 2: Proof of Liabilities: Setup Algorithm

5 POL SCHEME
Let T𝑛,𝑑 denote a sparse summation Verkle tree of arity 𝑛 and depth

𝑑 . We identify the vertices of T𝑛,𝑑 by their labels 𝜆 and the root

by empty label 𝜀. A leaf in the tree has label 𝜆 = 𝜆1 ...𝜆𝑑 such

that ∀ 1 ≤ 𝑖 ≤ 𝑑, 𝜆𝑖 ∈ [𝑛], and the path from the root to the leaf is

determined by nodes with labels (𝜀, 𝜆1, 𝜆1𝜆2, ..., 𝜆1 ...𝜆𝑑 ). Conversely,
the children of an internal node with label 𝜆 are determined by

labels 𝜆 ∥ 𝑖 for 𝑖 ∈ [𝑛]. Accordingly, we call the child with label

𝜆 ∥ 𝑖 , the child at index 𝑖 of node 𝜆. Let 𝑆 ⊆ [𝑛]𝑑 . We denote by

Tree(𝑆) the labels of the union of all the paths from the leaves

identified by 𝑆 to the root 𝜀, and by Frontier(𝑆) the labels of the
nodes that are not in Tree(𝑆) but their parent is.

Let ℎ : {0, 1}∗ → [𝑛]𝑑 be a collision-resistant hash function.

5.1 Setup
During setup (see Figure 2), prover P builds a sparse summation

Verkle tree, T𝑛,𝑑 . Each node at depth 𝑑 (i.e, a leaf) stores a value in

Z𝑝 , each node at depth 𝑑 − 1 stores a vector commitment 𝑉𝑑−1 to
the values in its children together with their sum, and each internal

node at depth 0 ≤ 𝑖 ≤ 𝑑−2 stores two vector commitments ⟨𝑉𝑖 ,𝑊𝑖 ⟩,
where 𝑉𝑖 is a vector commitment to the sum value committed in

each child plus their sum and𝑊𝑖 is a vector commitment to the

hash of each child.

More specifically, P computes for each entry (𝑖𝑑, ℓ) ∈ 𝐷𝐵 a label

ℎ(𝑖𝑑) and appends the result to the set of labels 𝑆 (lines 4 & 5). The

collision-resistance of ℎ ensures that each user is uniquely assigned

to a leaf. P then computes padding nodes (lines 6 − 17), which

coincide with labels in Frontier(𝑆). A leaf in Frontier(𝑆) contains

value 0, a node at depth 𝑑 − 1 contains a hiding vector commitment

to a zero vector, whereas a node at depth 𝑑 − 2 or lower contains
two hiding vector commitments to zero vectors.

Finally, P computes non-empty nodes, which are determined by

labels in Tree(𝑆) (lines 18 − 39). A leaf in Tree(𝑆) contains value ℓ ,
such that (𝑖𝑑, ℓ) ∈ 𝐷𝐵 and ℎ(𝑖𝑑) ∈ 𝑆 (lines 19 − 21). Now, a node
at depth 𝑑 − 1 stores the commitment to a vector v = (𝑣0, ..., 𝑣𝑛)
whereby 𝑣𝑖 is the value of the child at index 𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1 and
𝑣𝑛 is the sum of these values (i.e., 𝑣𝑛 =

∑𝑛−1
𝑖=0 𝑣𝑖 ) (lines 22 − 28). A

node at depth 𝑑 − 2 or lower stores two vector commitments (lines

29 − 39). The first commitment commits to v = (𝑣0, ..., 𝑣𝑛), with
𝑣𝑛 =

∑𝑛−1
𝑖=0 𝑣𝑖 and 𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1 being the sum committed in

the child at index 𝑖 . The second commitments commits to the hash

of the vector commitments in each child.

Setup concludes by outputting a pair (𝑃𝐷, 𝑆𝐷), where 𝑃𝐷 =

⟨𝑉0,𝑊0⟩ is the root of the sparse summation Verkle tree T𝑛,𝑑 (line

41) and 𝑆𝐷 is the secret data necessary to build T𝑛,𝑑 . That is, the
values and the randomness used to compute the hiding vector

commitments in T𝑛,𝑑 . P then publishes 𝑃𝐷 to a public bulletin

board, while storing 𝑆𝐷 locally.

5.2 Proving Total Liabilities
Given root 𝑃𝐷 = ⟨𝑉0,𝑊0⟩ and secret data 𝑆𝐷 , P shows that its total

liabilities equal 𝐿 by opening 𝑉0 at position 𝑛, and outputting the

result Π to the parties privy to its total liabilities.

Given (𝐿,Π), V runs VerOpen(ppVC,𝑉0, 𝑛, 𝐿,Π) ← 𝑏. If 𝑏 = 1,

then 𝐿 corresponds to the total liabilities of P.
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5.3 Proving Individual Liabilities
When P receives a proof of liabilities request, it first authenticates

it. If the request did not originate from a user 𝑢 ∈ U, then P rejects.

Let 𝑖𝑑 be the identifier of the user. P correspondingly, computes

𝜆 = 𝜆1 ...𝜆𝑑 = ℎ(𝑖𝑑), which identifies a unique path in T𝑛,𝑑 (line 2).

Recall that T𝑛,𝑑 ’s root stores ⟨𝑉0,𝑊0⟩. Without loss of generality,

we denote by ⟨𝑉𝑖 ,𝑊𝑖 ⟩, 1 ≤ 𝑖 ≤ 𝑑 − 1, the content of the internal

nodes along the path.

Now P generates (a) a range proof Ψ0 that demonstrates that

the values committed in 𝑉0 are in the authorized range; (b) a sum
argument Φ0 that proves that𝑉0 is a commitment to vector v0 such
that v0 [𝑛] =

∑𝑛−1
𝑖=0 v0 [𝑖] (see Figure 3, lines 13 & 14).

Then for each internal node, at depth 1 ≤ 𝑖 ≤ 𝑑 − 1, on the

path from the root to 𝜆, P (a) shows that the hash of the content of

the node opens commitment𝑊𝑖−1 at position 𝜆𝑖 (line 19); (b) pro-
duces a range proof Ψ𝑖 that shows that the values committed in

𝑉𝑖 are in the authorized range (line 22); (c) computes a sum argu-

ment Φ𝑖 that proves that 𝑉𝑖 is a commitment to vector v𝑖 such that

v𝑖 [𝑛] =
∑𝑛−1

𝑗=0 v𝑖 [ 𝑗] (line 23); (d) generates an opening equality ar-

gument that demonstrates that v𝑖 [𝑛] open 𝑉𝑖 and 𝑉𝑖−1 at positions
𝑛 and 𝜆𝑖 respectively (line 28).

Finally, P opens vector commitment𝑉𝑑−1 at position 𝜆𝑑 (line 30).

Let 𝜋 denote all the proofs generated by P (line 31).

Upon receiving P’s response 𝜋 , the user parses it as a 𝑑 +1-length
array P, where for 1 ≤ 𝑖 ≤ 𝑑 , P[𝑖] contains the proofs produced for

the 𝑖th node on the path from the root to leaf 𝜆 = ℎ(𝑖𝑑), and P[0]
contains the proofs generated for the root. The user then reads P[0]
as ⟨Ψ0,Φ0⟩ and checks whether they are a valid range proof and

sum argument with respect to the published vector commitment

𝑉0 (lines 42 − 47). Next, the user parses P[𝑖] for 1 ≤ 𝑖 ≤ 𝑑 − 1

as ⟨𝑉𝑖 ,𝑊𝑖 ,Ψ𝑖 ,Φ𝑖 , Υ𝑖 ,Ω𝑖 ⟩ (line 50) and verifies whether (a) Ω𝑖 is a

valid proof that opens vector commitment𝑊𝑖−1 to value ℎ(𝑉𝑖 ,𝑊𝑖 )
at position 𝜆𝑖 (line 52); (b) (Ψ𝑖 ,Φ𝑖 ) are valid range proof and sum

argument with respect to vector commitment 𝑉𝑖 (lines 54 & 55);

(c) Υ𝑖 is a valid opening equality argument for vector commitments

𝑉𝑖 and 𝑉𝑖−1 at positions 𝑛 and 𝜆𝑖 respectively (line 57).

Finally, the user parses P[𝑑] as Ω𝑑 and checks if Ω𝑑 proves that

vector v𝑑−1 committed in 𝑉𝑑−1 satisfies v𝑑−1 [𝜆𝑑 ] = ℓ , where ℓ is
the liability of P to the user (line 61). If all checks succeed, then the

user accepts the proof of liability; otherwise, it rejects.

5.4 Security and Privacy
We now prove that our scheme is secure and privacy-preserving

and satisfies the definitions in Section 2.

Theorem 5.1. The proof of liabilities described in Section 5 is a
secure ( [𝑛]𝑑 ,𝑚𝑎𝑥)−PoL (i.e., satisfies Definition 5).

Proof. It is straight forward to show that our PoL is com-

plete. It remains to show that the PoL is sound. Let U∗ denote
the subset of honest users requesting proofs of liabilities. Assume

for contradiction that there exists an adversary A∗ that succeeds
in breaking the soundness of our PoL scheme. This translates

to A∗ producing public data ⟨𝑉0,𝑊0⟩, a valid proof Π such that

VerOpen(ppVC,𝑉0, 𝑛, 𝐿∗,Π) = 1, and valid proofs 𝜋𝔲 for all 𝔲 ∈ U.

Each user proof 𝜋 comprises of an authentication path P of length
𝑑 + 1. P[0] should correspond to the root of the tree and comprises

of range proof Ψ0 and sum argument proof Φ0. For 𝑖 ∈ [1, 𝑑], P[𝑖]
consists of vector commitments 𝑉𝑖 and𝑊𝑖 , range proof Ψ𝑖 , sum
argument Φ𝑖 , opening equality argument Υ𝑖 , and vector opening Ω𝑖 .

P[𝑑] should correspond to a leaf and consists of an opening Ω𝑑 .

For any set of usersU and their liabilities, there exists a unique

sparse summation Verkle tree from which the proofs should be

generated. We emphasize, however, that the adversary may not

build a tree and may try to generate the proofs maliciously. Below,

we proceed by cases and argue that any adversary who does not

follow the protocol will not be able to construct a valid proof. We

denote the vector commitment of a vector v𝑖 with 𝑉𝑖 .
(1) There are two users who are given the same authentication

path P. Note that each user 𝔲 ∈ U has a unique identifier 𝑖𝑑𝔲

and so ℎ(𝑖𝑑𝔲) must be mapped to a unique value in [𝑛]𝑑 that

identifies a unique path in the tree. Thus this would contradict

the collision resistance of ℎ.

(2) There exists an honest user 𝔲 with label 𝜆1 . . . 𝜆𝑑 such that

v𝑑−1 [𝜆] contains a value smaller than ℓ𝔲 . This implies that

P[𝑑] contains a proof Ω𝑑 that opens vector commitment 𝑉𝑑−1
at index 𝜆𝑑 to ℓ𝔲 . This, however, would contradict the binding

property of the vector commitment.

(3) Suppose now that for all honest users, P[𝑑] stores an opening

to the correct liability at the correct index, where P is the user’s
respective authentication path. One of the following must hold:

(a) There exists a user 𝔲 ∈ U \M with label 𝜆1 . . . 𝜆𝑑 such

that for some index 0 ≤ 𝑖 ≤ 𝑑 − 1 we have v𝑖 [𝜆𝑖 ] >

v𝑖−1 [𝑛]. This implies that Υ𝑖 ∈ P[𝑖] is a valid OEA proof

for the instance (𝑉𝑖 ,𝑉𝑖−1, 𝜆𝑖 , 𝑛) which would contradict

the security of the opening equality argument OEA.
(b) There exists a user 𝔲 ∈ U \M such that for some index

0 ≤ 𝑖 ≤ 𝑑 − 1 we have v𝑖 [𝑛] <
∑

𝑗∈[𝑛] v𝑖 [ 𝑗]. This implies

that Φ𝑖 ∈ P[𝑖] is a valid sum argument for the instance𝑉𝑖
which would contradict the security of sum argument SA.

(c) There exists a user 𝔲 ∈ U \M such that for some indices

0 ≤ 𝑖 ≤ 𝑑 − 1 and 𝑗 ∈ [𝑛] we have v𝑖 [ 𝑗] < 0. This implies

that Ψ𝑖 ∈ P[𝑖] is a valid range proof for the instance 𝑉𝑖
which would contradict the security of range proof RP.

(d) There exists a user 𝔲 ∈ U \M with label 𝜆1 . . . 𝜆𝑑 such

that for some index 1 ≤ 𝑖 ≤ 𝑑 , w𝑖−1 [𝜆𝑖 ] is not equal to
ℎ(𝑉𝜆𝑖 ,𝑊𝜆𝑖 ). In other words,𝑊𝑖 does not correctly encode

the path corresponding to the user. This implies that Ω𝑖 ∈
P[𝑖] is a valid opening of𝑊𝑖−1 to the value ℎ(𝑉𝜆𝑖 ,𝑊𝜆𝑖 ) at
index 𝜆𝑖 which would contradict either the binding of the

vector commitment or collision resistance of hash ℎ.

We have reached a contradiction and therefore conclude that

our construction is a secure ( [𝑛]𝑑 ,𝑚𝑎𝑥)−PoL. □

Theorem 5.2. The proof of liabilities described in Section 5 is
L-private ( [𝑛]𝑑 ,𝑚𝑎𝑥)−PoL(Definition 6), with L = ∅.

Proof. LetM ⊆ U denote the set of malicious users. We now

describe a simulator, which upon input of 𝜅, 𝐷𝐵 [M], and L = ∅
returns outputs to the malicious users that are computationally

indistinguishable from the ones produced by our PoL scheme.

Simulator. IfM = ∅, then the simulator samples 𝑟 and 𝑠 , computes

𝑉 = Commit(ppVC, 0n+1, 𝑟 ) and𝑊 = Commit(ppVC, 0n+1, 𝑠), and
returns 𝑃𝐷 = ⟨𝑉 ,𝑊 ⟩.
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Let𝑚𝑎𝑥 be the maximum value of a liability.

Let ppRP be the public parameters of a range proof for the vector commitment scheme VC and range [𝑚𝑎𝑥 ].
Let ppSA be the public parameters of a sum argument for the vector commitment scheme VC.
Let ppOEA be the public parameters of an opening equality argument for the vector commitment scheme VC.

1: Prove(𝐷𝐵, 𝑆𝐷, 𝑖𝑑)→ 𝜋

2: 𝜆1 ...𝜆𝑑 ← ℎ (𝑖𝑑 )
3: W← [·]
4: P← [·]
5: 𝜆 ← 𝜀 ⊲ empty string

6: W[0] ← 𝑆𝐷 [𝜆]
7: for 1 ≤ 𝑖 ≤ 𝑑 do
8: 𝜆 ← 𝜆 ∥ 𝜆𝑖
9: W[𝑖 ] ← 𝑆𝐷 [𝜆]
10: ⟨𝑉0,𝑊0, v0,w0, 𝑟0, 𝑠0 ⟩ ←W[0]
11: x0 ← 𝑉0

12: w0 ← (v0, 𝑟0 )
13: Ψ0 ← PRP (ppRP,x0,w0 )
14: Φ0 ← PSA (ppSA,x0,w0 )
15: P[0] ← ⟨Ψ0,Φ0 ⟩
16: for 1 ≤ 𝑖 ≤ 𝑑 − 1 do
17: ⟨𝑉𝑖−1,𝑊𝑖−1, v𝑖−1,w𝑖−1, 𝑟𝑖−1, 𝑠𝑖−1 ⟩ ←W[𝑖 − 1]
18: ⟨𝑉𝑖 ,𝑊𝑖 , v𝑖 ,w𝑖 , 𝑟𝑖 , 𝑠𝑖 ⟩ ←W[𝑖 ]
19: Ω𝑖 ← Open(ppVC, 𝜆𝑖 ,w𝑖−1, 𝑠𝑖−1 )
20: x𝑖 ← 𝑉𝑖

21: w𝑖 ← (v𝑖 , 𝑟𝑖 )
22: Ψ𝑖 ← PRP (ppRP,x𝑖 ,w𝑖 )
23: Φ𝑖 ← PSA (ppSA,x𝑖 ,w𝑖 )
24: Ω′

𝑖
← Open(ppVC, 𝜆𝑖 , v𝑖−1, 𝑟𝑖−1 )

25: Ω′′
𝑖
← Open(ppVC, 𝑛, v𝑖 , 𝑟𝑖 )

26: x𝑖 ← (𝑉𝑖−1,𝑉𝑖 , 𝜆𝑖 , 𝑛)
27: w𝑖 ← (v𝑖 [𝑛],Ω′𝑖 ,Ω′′𝑖 )
28: Υ𝑖 ← POEA (ppOEA,x𝑖 ,w𝑖 )
29: P[𝑖 ] ← ⟨𝑉𝑖 ,𝑊𝑖 ,Ψ𝑖 ,Φ𝑖 , Υ𝑖 ,Ω𝑖 ⟩
30: P[𝑑 ] ← Open(ppVC, 𝜆𝑑 , v𝑑−1, 𝑟𝑑−1 )
31: 𝜋 ← P

32: return 𝜋

33: Verify(𝑃𝐷, 𝑖𝑑, ℓ, 𝜋 )→ 𝑏

34: ⟨𝑉0,𝑊0 ⟩ ← 𝑃𝐷

35: 𝜆1 ...𝜆𝑑 ← ℎ (𝑖𝑑 )
36: 𝜋 ← P
37: C← [·]
38: C[0] ← ⟨𝑉0,𝑊0 ⟩
39: for 1 ≤ 𝑖 ≤ 𝑑 − 1 do
40: ⟨𝑉𝑖 ,𝑊𝑖 ,Ψ𝑖 ,Φ𝑖 , Υ𝑖 ,Ω𝑖 ⟩ ← P[𝑖 ]
41: C[𝑖 ] ← ⟨𝑉𝑖 ,𝑊𝑖 ⟩
42: ⟨Ψ0,Φ0 ⟩ ← P[0]
43: x0 ← 𝑉0

44: 𝑏1 ← VRP (ppRP,x0,Ψ0 )
45: 𝑏2 ← VSA (ppSA,x0,Φ0 )
46: if 𝑏1 ∧ 𝑏2 = 0 then
47: return 0

48: for 1 ≤ 𝑖 ≤ 𝑑 − 1 do
49: ⟨𝑉𝑖−1,𝑊𝑖−1 ⟩ ← C[𝑖 − 1]
50: ⟨𝑉𝑖 ,𝑊𝑖 ,Ψ𝑖 ,Φ𝑖 , Υ𝑖 ,Ω𝑖 ⟩ ← P[𝑖 ]
51: 𝑤𝑖 ← ℎ (𝑉𝑖 ,𝑊𝑖 )
52: 𝑏1 ← VerOpen(ppVC,𝑊𝑖−1, 𝜆𝑖 , 𝑤𝑖 ,Ω𝑖 )
53: x𝑖 ← 𝑉𝑖

54: 𝑏2 ← VRP (ppRP,x𝑖 ,Ψ𝑖 )
55: 𝑏3 ← VSA (ppSA,x𝑖 ,Φ𝑖 )
56: x𝑖 ← (𝑉𝑖−1,𝑉𝑖 , 𝜆𝑖 , 𝑛)
57: 𝑏4 ← VOEA (ppOEA,x𝑖 , Υ𝑖 )
58: if 𝑏1 ∧ 𝑏2 ∧ 𝑏3 ∧ 𝑏4 = 0 then
59: return 0

60: Ω𝑑 ← P[𝑑 ]
61: 𝑏 ← VerOpen(ppVC,𝑉𝑑−1, 𝜆𝑑 , ℓ,Ω𝑑 )
62: return 𝑏

Figure 3: Proof of Liabilities: Prove and Verify Algorithm

IfM ≠ ∅, then the simulator builds a sparse summation Verkle

tree on 𝐷𝐵 [M] following Setup, see Figure 2. It then computes the

proofs of liabilities {𝜋𝔲}𝔲∈M as described in Prove (Figure 3). Let
⟨𝑉 ,𝑊 ⟩ denote the root of the resulting tree. The simulator returns

(𝑃𝐷 = ⟨𝑉 ,𝑊 ⟩, 𝐷𝐵 [M], {𝜋𝔲}𝔲∈M ).
Game sequence. We now introduce a series of hybrid games to

show that the execution of our PoL scheme and the execution of

the simulator are indistinguishable.

Hyb0: This is identical to an execution of our PoL scheme on input

𝐷𝐵 [U], following the description in Figures 2 and 3.

Hyb1: Run Setup by first inserting the malicious usersM into the

tree, and then insert the honest usersU \M.

Hyb2: Run Setup by first inserting the malicious usersM into the

tree, however, for all other users 𝔲 ∈ U\M do the following. If 𝔲 ∈
Frontier(M), then set its liability to 0. Else for each remaining user

𝔲, compute its authentication path, find the node along this path

that is in Frontier(M), compute the corresponding commitments

as described in lines 9 to 17 of Figure 2, and then prune the subpath

from 𝔲’s leaf up to (but not including) the frontier node.

Hyb3: Run Setup on input 𝐷𝐵 [M].
Hyb0 is indistinguishable from Hyb1, since the SSVT ensures

history independence. In other words, the order in which we insert

U has no bearing on the tree, and thus, the same tree is produced

in both games.

Hyb1 is indistinguishable from Hyb2. If not, the adversary is

able to distinguish between either the public data or the proof

of liabilities to a user inM that are produced from 𝐷𝐵 [U] and
𝐷𝐵 [M]. The former implies that the root ⟨𝑉0,𝑊0⟩ of Hyb1 and the

root ⟨𝑉 ′
0
,𝑊 ′

0
⟩ of Hyb2 are distinguishable, therefore breaking the

hiding property of the vector commitments. The latter implies that

there exists some user 𝔲 ∈ M whose proof 𝜋 generated in Hyb1 is

distinguishable from their proof 𝜋 ′ generated in Hyb2. But 𝜋 and

𝜋 ′ consist of vector commitments, range proofs, sum arguments,

opening equality arguments, and vector commitment openings.

Distinguishing between the proofs either breaks the hiding property
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of the vector commitments or the zero-knowledge property of

arguments RP, SA and OEA.
Hyb2 is identical toHyb3. Namely, inHyb2, all nodes in Frontier(M)

are computed following the steps described in lines 7 to 17 of Fig-

ure 2. Additionally, nodes that are not in the frontier or along the

authentication paths ofM are pruned. This is the same as simply

building the tree on 𝐷𝐵 [M]. More concretely, each leaf node in

Hyb2 or Hyb3 corresponds to a user inM, and each inner node

contains vector commitments that are only defined as a function of

the liabilities inM.

Lastly, observe that the distribution of Hyb3 is identical to that

of running the simulator S. This concludes the proof. □

6 INSTANTIATION
We now instantiate the cryptographic building blocks introduced

in Section 4. We provide an overview of the hiding vector com-

mitments introduced in [11], and describe our tailor-made range
proofs, opening equality arguments and sum arguments. Together,

these primitives enable us to keep the proofs of liabilities short.

6.1 Inner Product Argument
To construct the sum argument and range proof, we leverage inner

product arguments [12, 19]. These enable a prover to show that

the inner product of two vectors v,w ∈ Z𝑛𝑝 committed to using

Pedersen vector commitments evaluates to a public value 𝑐 .

Definition 16. Let G = (𝐺0, ...,𝐺𝑛−1) and H = (𝐻0, ...𝐻𝑛−1) be
two vectors of 𝑛 generators of G, such that for all 𝑖 ≠ 𝑗 , the relative
discrete log of 𝐺𝑖 (resp. 𝐻𝑖 ) relative to 𝐺 𝑗 (resp. 𝐻 𝑗 ) is unknown.

An inner product argument IPA = (GIPA,PIPA,VIPA) is an argu-
ment of knowledge for the following relation:

x = (𝑃, 𝑐) ; w = (a, b) ∈ Z𝑛𝑝 × Z𝑛𝑝 : 𝑃 = GaHb ∧ a · b = 𝑐

We instantiate the inner product argument using the improved

inner product argument introduced in [12]. This argument can be

made non-interactive using the Fiat-Shamir heuristic.

6.2 Hiding Vector Commitments
We instantiate the hiding vector commitments with Pointproofs

[11]. This scheme extends the pairing-based vector commitment

of Libert and Yung [17] to support the aggregation of openings

across the same commitment as well as different commitments. This

reduces the cost of verification (notably, the number of pairings

to be computed). We also leverage the aggregation of openings to

aggregate opening equality arguments (see Section 7.1).

Let (G,G𝑇 ) be groups of prime order 𝑝 that admit an efficient

bilinear pairing 𝑒 : G × G→ G𝑇 . Let 𝐺 and 𝑒 (𝐺,𝐺) be generators
of G and G𝑇 , respectively

2
. This scheme requires a trusted-setup to

generate the public parameters using a secret value 𝛼 ∈ Z𝑝 known

to no one after setup. The description of the 8 algorithms of VC
follows.

1. ppVC ← ParamGen(1𝜅 , 𝑛): Sample 𝛼←$ Z𝑝 and output 𝐺 and

F = (𝐹0, ..., 𝐹𝑛, 𝐹𝑛+2, ..., 𝐹2𝑛+1) : 𝐹𝑖 = 𝐺𝛼𝑖+1
for 𝑖 ∈ [2(𝑛+1)]\{𝑛+1}

2
Pointproofs uses asymmetric pairings. For ease of exposition, we describe the scheme

using symmetric pairings.

2. 𝑉 ← Commit(ppVC, v, 𝑟 ). To commit to vector v = (𝑣0, ..., 𝑣𝑛−1)
with randomness 𝑟 , compute

𝑉 = F[: 𝑛 + 1]v∥𝑟 = 𝐹𝑟𝑛

𝑛−1∏
𝑖=0

𝐹
𝑣𝑖
𝑖

3. Ω ← Open(ppVC, 𝑖, v, 𝑟 ). To reveal element v[𝑖], compute

Ω = 𝐹𝑟
2𝑛−𝑖

𝑛−1∏
𝑗=0, 𝑗≠𝑖

𝐹
𝑣𝑗
𝑛+𝑗−𝑖 =

(
𝑉

𝐹
𝑣𝑖
𝑖

)𝛼𝑛+1−𝑖

4. 𝑏 ← VerOpen(ppVC,𝑉 , 𝑖, 𝑣,Ω). To verify if 𝑣 opens 𝑉 at index

𝑖 , check if 𝑒 (𝑉 , 𝐹𝑛−𝑖 ) = 𝑒 (Ω,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑣 . If yes, then output 1.

Otherwise output 0. We call Ω the opening proof of triple index,

value and commitment (𝑖, 𝑣,𝑉 )
Both same and cross aggregation rely on computing a product

of the proofs of individual openings raised to some exponent. To

preserve the binding property after aggregation, this exponent is

computed as a hash of the vector commitments, the indices being

opened and the values at these indices. In the following, 𝑆 ⊆ [𝑛]
denotes the subset of indices we are aggregating across.

5. Ω̂ ← AggregateSame(ppVC,𝑉 , 𝑆, v[𝑆], {Ω𝑖 }𝑖∈𝑆 ). Outputs

Ω̂ =
∏
𝑖∈𝑆

Ω𝑡𝑖
𝑖

whereΩ𝑖 is the opening of𝑉 at index 𝑖 and 𝑡𝑖 = ℎ(𝑖,𝑉 , 𝑆, {𝑣𝑖 }𝑖∈𝑆 ).
6. 𝑏 ← VerOpenSame(ppVC,𝑉 , 𝑆, v[𝑆], Ω̂). To verify if 𝑣𝑖 opens𝑉

at index 𝑖 for all 𝑖 ∈ 𝑆 , check if

𝑒 (𝑉 ,
∏
𝑖∈𝑆

𝐹
𝑡𝑖
𝑛−𝑖 ) = 𝑒 (Ω̂,𝐺)𝑒 (𝐹0, 𝐹𝑛)

∑
𝑖∈𝑆 𝑣𝑖𝑡𝑖 .

where 𝑡𝑖 is as before. If equal, output 1. Otherwise output 0.

7. Ω ← AggregateAcross(ppVC, {𝑉𝑗 , 𝑆 𝑗 , v𝑗 [𝑆 𝑗 ], Ω̂ 𝑗 } 𝑗∈[𝑘 ] ). Outputs

Ω =
∏
𝑗∈[𝑘 ]

Ω̂
𝑡 ′𝑗
𝑗

where Ω̂ 𝑗 is the aggregated opening from AggregateSame and

𝑡 ′𝑗 = ℎ
′ ( 𝑗, {𝑉𝑗 , 𝑆 𝑗 , v𝑗 [𝑆 𝑗 ]} 𝑗∈[𝑘 ] ) .

8. 𝑏 ← VerOpenAcross(ppVC, {𝑉𝑗 , 𝑆 𝑗 , v𝑗 [𝑆 𝑗 ]} 𝑗∈[𝑘 ] ,Ω). To verify

if the v𝑗 [𝑆 𝑗 ] open 𝑉𝑗 at positions 𝑆 𝑗 , check if∏
𝑗∈[𝑘 ]

𝑒 (𝑉𝑗 ,
∏
𝑖∈𝑆

𝐹
𝑡 𝑗,𝑖
𝑛−𝑖 )

𝑡 ′𝑗 = 𝑒 (Ω,𝐺)𝑒 (𝐹0, 𝐹𝑛)
∑

𝑗 ∈ [𝑘 ],𝑖∈𝑆𝑗 v[𝑖 ]𝑡 𝑗,𝑖𝑡 ′𝑗

where Ω is the cross aggregation opening,

𝑡 ′𝑗 = ℎ
′ ( 𝑗, {𝑉𝑗 , 𝑆 𝑗 , v𝑗 [𝑆 𝑗 ]} 𝑗∈[𝑘 ] ) and 𝑡 𝑗,𝑖 = ℎ(𝑖,𝑉𝑗 , 𝑆 𝑗 , v𝑗 [𝑆 𝑗 ]).

If the equality holds, then output 1. Otherwise output 0.

Gorbunov et al. [11] prove the security of Pointproofs in the

algebraic group model (AGM) and the random oracle model (ROM)

under the assumption of the weak bilinear Diffie-Hellman exponent

problem 𝑛-wBDHE∗.
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Let G = (𝐺0, . . . ,𝐺𝑛−1 ) be a vector of 𝑛 generators of G.

Let pp = G be the public parameters of Rdx, x = 𝑉 the instance andw = (v, 𝑟 ) the witness such that𝑉 = Gv
.

We assume that 𝑛 is a power of 2 and we denote by 𝜇 the value log(𝑛) .

1: PRdx(pp,x,w)→ (Γ, x)
2: Δ← [·]
3: x← [·]
4: 𝑖 ← 𝜇 − 1

5: while 𝑖 ≥ 0 do
6: (G𝐿,G𝑅 ) ← (G[: 2𝑖 ],G[2𝑖 :] )
7: (v𝐿, v𝑅 ) ← (v[: 2𝑖 ], v[2𝑖 :] )
8: 𝐴← Gv𝑅

𝐿
⊲ Compute cross-terms 𝐴 and 𝐵.

9: 𝐵 ← Gv𝐿
𝑅

10: 𝑥 ← ℎ (𝐴, 𝐵,𝑉 )
11: G← G𝐿 · G𝑥−1

𝑅

12: v← v𝐿 + 𝑥v𝑅
13: 𝑉 ← Gv

14: (x[𝑖 ],Δ[𝑖 ] ) ← (𝑥, (𝐴, 𝐵,𝑉 ) )
15: 𝑖 ← 𝑖 − 1

16: Γ ← (Δ, v[0] )
17: return (Γ, x)

18: VRdx(pp,x, Γ)→ (𝑏, x, 𝑣)
19: (Δ, 𝑣) ← Γ
20: 𝑉𝜇 ← 𝑉

21: x← [·]
22: 𝑖 ← 𝜇 − 1

23: while 𝑖 ≥ 0 do
24: (𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 ) ← Δ[𝑖 ]
25: 𝑥 ← ℎ (pp, 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖+1 )
26: if 𝑉𝑖 ≠ (𝐴𝑖 )𝑥 (𝐵𝑖 )𝑥

−1
𝑉𝑖+1 then

27: return (0,⊥, 0)
28: x[𝑖 ] ← 𝑥

29: (G𝐿,G𝑅 ) ← (G[: 2𝑖 ],G[2𝑖 :] )
30: G← G𝐿 · G𝑥−1

𝑅

31: 𝑖 ← 𝑖 − 1

32: if G[0]𝑣 ≠ 𝑉0 then
33: return (0,⊥, 0)
34: return (1, x, 𝑣)

Figure 4: The iterative reduction Rdx from Bootle et al. [19]

Let pp = (𝐺, F) be the public parameters of the hiding vector commitment described in Section 6.2.

Let x denote (𝑉 ,𝑊 , 𝑖, 𝑗 ) andw denote 𝑣 such that 𝑣 opens𝑉 and𝑊 at indices 𝑖 and 𝑗 respectively.

Let Ω𝑉 and Ω𝑊 be the proofs that 𝑣 opens𝑉 and𝑊 at indices 𝑖 and 𝑗 respectively.

1: POEA(pp,x,w)→ Υ
2: (𝑢,𝜂, 𝜈 )←$ Z𝑝 × Z𝑝 × Z𝑝

⊲ 𝑉 is a vector commitment to (0𝑖−1 ∥ 𝑢 ∥ 0𝑛−𝑖 )
3: (𝑉 , Ω̂𝑉 ) ← (𝐹 𝜈

𝑛 𝐹
𝑢
𝑖
, 𝐹 𝜈

2𝑛−𝑖 )
⊲𝑊 is a hiding commitment to (0𝑗−1 ∥ 𝑢 ∥ 0𝑛− 𝑗 )

4: (𝑊, Ω̂𝑊 ) ← (𝐹𝜂𝑛 𝐹𝑢𝑗 , 𝐹
𝜂

2𝑛− 𝑗 )
5: 𝑥 ← ℎ (𝑉 ,𝑊 ,𝑉 ,𝑊 )
6: 𝑐 ← 𝑣 + 𝑥𝑢
7: for 0 ≤ 𝑘 ≤ 1 do
8: 𝑡𝑘 ← ℎ (𝑘,𝑉𝑉 𝑥 ,𝑊𝑊 𝑥 , 𝑖, 𝑗, 𝑐 )
9: Ω ← (Ω𝑉 Ω̂𝑥

𝑉
)𝑡0 (Ω𝑊 Ω̂𝑥

𝑊
)𝑡1

10: Υ← (𝑐,𝑉 ,𝑊 ,Ω)

11: VOEA(pp,x, Υ)→ 𝑏

12: (𝑐,𝑉 ,𝑊 ,Ω) ← Υ
13: 𝑥 ← ℎ (𝑉 ,𝑊 ,𝑉 ,𝑊 )
14: for 0 ≤ 𝑘 ≤ 1 do
15: 𝑡𝑘 ← ℎ (𝑘,𝑉𝑉 𝑥 ,𝑊𝑊 𝑥 , 𝑖, 𝑗, 𝑐 )
16: if 𝑒 ( (𝑉𝑉 𝑥 )𝑡0 ,𝐹𝑛−𝑖 )𝑒 ( (𝑊𝑊 𝑥 )𝑡1 ,𝐹𝑛− 𝑗 )

𝑒 (Ω,𝐺 )𝑒 (𝐹0,𝐹𝑛 )𝑐 (𝑡0+𝑡1 )
≠ 1 then

⊲ (𝑡0, 𝑡1, 𝑐,Ω) does not satisfy Equation 1

17: return 0

18: else
19: return 1

Figure 5: Opening Equality Argument OEA

6.3 Opening Equality Argument
Let F = (𝐹0, ..., 𝐹𝑛) be the 𝑛 + 1 first generators from the public pa-

rameters of the hiding vector commitments described in Section 6.2.

An opening equality argument for our instantiation should prove

in zero-knowledge that two Pointproofs vector commitments 𝑉

and𝑊 open to the same value 𝑣 at indices 𝑖 and 𝑗 respectively. This

corresponds to proving the following equalities in zero-knowledge:

𝑒 (𝑉 , 𝐹𝑛−𝑖 ) = 𝑒 (Ω𝑉 ,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑣

𝑒 (𝑊, 𝐹𝑛− 𝑗 ) = 𝑒 (Ω𝑊 ,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑣

Where Ω𝑉 and Ω𝑊 are the opening proofs for triples (𝑖, 𝑣,𝑉 ) and
( 𝑗, 𝑣,𝑊 ) respectively. Since these equalities involve pairings, prov-
ing them in zero-knowledge with Schnorr proofs [20] or Groth-

Sahai proofs [21] is costly. Instead, we propose a zero-knowledge

argument tailored for Pointproofs that circumvents zero-knowledge

verification of pairing equalities. Namely, the prover need not prove

knowledge of Ω𝑉 and Ω𝑊 to convince the verifier that 𝑉 and𝑊

open to the same value 𝑣 , at indices 𝑖 and 𝑗 .

Let 𝑉 and𝑊 be Pointproofs vector commitments that commit

to the same value 𝑢 at indices 𝑖 and 𝑗 . This means that there exists
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unique (Ω̂𝑉 , Ω̂𝑊 ) ∈ G × G such that:

𝑒 (𝑉 , 𝐹𝑛−𝑖 ) = 𝑒 (Ω̂𝑉 ,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑢

𝑒 (𝑊, 𝐹𝑛− 𝑗 ) = 𝑒 (Ω̂𝑊 ,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑢

By the additive homomorphism of Pointproofs,𝑉𝑉 𝑥
and𝑊𝑊 𝑥

are

commitments that open to the same value 𝑐 = 𝑣 + 𝑥𝑢 at indices 𝑖

and 𝑗 , for any 𝑥 ∈ Z𝑝 . This can be expressed as follows.

𝑒 (𝑉𝑉 𝑥 , 𝐹𝑛−𝑖 ) = 𝑒 (Ω𝑉 Ω̂𝑥
𝑉 ,𝐺)𝑒 (𝐹0, 𝐹𝑛)

𝑐

𝑒 (𝑊𝑊 𝑥 , 𝐹𝑛− 𝑗 ) = 𝑒 (Ω𝑊 Ω̂𝑥
𝑊 ,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑐

Thanks to cross-commitment aggregation in Pointproofs, we

aggregate these equalities into one:

𝑒 ((𝑉𝑉 𝑥 )𝑡0 , 𝐹𝑛−𝑖 )𝑒 ((𝑊𝑊 𝑥 )𝑡1 , 𝐹𝑛− 𝑗 ) = 𝑒 (Ω,𝐺)𝑒 (𝐹0, 𝐹𝑛) (𝑡0+𝑡1 )𝑐
(1)

where 𝑡𝑘 = ℎ(𝑘,𝑉𝑉 𝑥 ,𝑊𝑊 𝑥 , 𝑖, 𝑗, 𝑐), 𝑘 ∈ {0, 1} and

Ω = (Ω𝑉 Ω̂𝑥
𝑉 )

𝑡0 (Ω𝑊 Ω̂𝑥
𝑊 )

𝑡1 .

The idea of our argument is that if 𝑢 is random, then (𝑐,Ω) can be

sent in the clear, enabling the verifier to check Equation 1 directly.

Figure 5 describes our opening equality argument in more detail.

Now by the soundness of the aggregation of Pointproofs, 𝑐 opens

𝑉𝑉 𝑥
and𝑊𝑊 𝑥

at indices 𝑖 and 𝑗 respectively. Let 𝑣 denote the 𝑖th

element of the vector committed in 𝑉 and𝑤 the 𝑗 th element of the

vector committed in𝑊 . Let 𝑣 denote the 𝑖th element of the vector

committed in 𝑉 and �̂� the 𝑗 th element of the vector committed in

𝑊 . By the binding property of Pointproofs, 𝑐 = 𝑣 + 𝑥𝑣 = 𝑤 + 𝑥�̂� . If

𝑥 is random (in particular, if 𝑥 is computed as ℎ(𝑉 ,𝑊 ,𝑉 ,�̂� )), then
the Shwartz-Zippel lemma guarantees that 𝑣 = 𝑤 and 𝑣 = �̂� with

all but negligible probability 1/𝑝 .
Zero-knowledge, on the other hand, follows from the fact that

a simulator with knowledge of the trapdoor 𝛼 of Pointproofs and

control over a random oracle, can randomly select 𝑐 ,𝑊 and 𝑉 , and

successfully find Ω that satisfies Equation 1.

Theorem 6.1. The argument described in Figure 5 is an opening
equality argument under the security of Pointproofs in ROM.

The proof of Theorem 6.1 is deferred to Appendix A.1.

6.4 Sum Argument
To instantiate a sum argument over vector commitments for our

PoL, it is sufficient to devise a zero-knowledge argument for relation

x = 𝑉 ; w = (v, 𝑟 ) ∈ Z𝑛𝑝 × Z𝑝 : 𝑉 = 𝐹𝑟Gv ∧ v[𝑛 − 1] =
𝑛−2∑︁
𝑖=0

v[𝑖] .

Where G = (𝐺0, ...,𝐺𝑛−1) and 𝐹 are 𝑛 + 1 random generators
3
of G.

While the sum argument is also given by functional commitment

(FC) schemes for linear functions, we note that some FC schemes

use composite groups (e.g. [22]) which is less efficient. We leave

the question of efficiently implementing the SA in the context of

PoL using FC schemes as future work.

3𝑉 here is a hiding Pedersen commitment and not a Pointproof one. We note though

that a Pointproofs hiding vector commitment is an instantiation of a Pedersen com-

mitment with G = (𝐹0, ..., 𝐹𝑛−1 ) = (𝐺𝛼 , ...,𝐺𝛼𝑛 ) and 𝐹 = 𝐹𝑛 = 𝐺𝛼𝑛+1
.

Observe that v[𝑛−1] = ∑𝑛−2
𝑖=0 v[𝑖] is equivalent to the inner prod-

uct v ·b being zero, where b is the 𝑛-dimensional vector (1, ..., 1,−1).
We therefore leverage an inner product argument IPA to realize the

sum argument. Inner product arguments, however, do not satisfy

zero-knowledge if the IPA’s prover is called on vectors v and b since

the resulting proof will leak information about these vectors (in

particular, about the secret vector v). Similar to [12], we prevent

leakage by blinding vector v and then running the IPA’s prover on
the blinded vector.

Figure 6 depicts our sum argument in details. Specifically, the

sum argument prover selects a random vector w of 𝑛 elements (line

2) and computes a Pedersen commitment𝑊 = 𝐹𝑟
′
Gw

(line 3) and

the inner product 𝑐 = w · b (line 4). Then it computes the challenge

𝑥 as the hash of (𝑐,𝑉 ,𝑊 ) (line 5).
Let a be the vector defined as v + 𝑥w. If v · b = 0, then a · b = 𝑐𝑥 .

Thanks to Schwartz-Zippel lemma, if a · b = 𝑐𝑥 , then v · b = 0 with

all but negligible probability 1/𝑝 .
Let H = (𝐻0, ..., 𝐻𝑛−1) be 𝑛 random generators of G and let 𝐵

denote the Pedersen commitment Hb
.

Now the sum argument prover prepares the inputs for the IPA’s
prover (lines 6 & 7). This consists of computing Pedersen commit-

ment 𝑃 = GaHb
, which can be easily shown to be equal to 𝐹𝜌𝑉𝑊 𝑥𝐵

for 𝜌 = −𝑟 − 𝑥𝑟 ′, where 𝑟 and 𝑟 ′ are the randomness used in the

computation of 𝑉 and𝑊 respectively. Once 𝑃 is computed, the

IPA’s prover is called to prove that a · b actually equals 𝑐𝑥 (line 10).

The verification of the sum argument proceeds with computing

the challenge 𝑥 (line 15) and then checking the validity of the IPA’s
proof in relation to 𝑃 = 𝐹𝜌𝑉𝑊 𝑥𝐵 and 𝑐𝑥 (line 18). If the IPA’s proof
is valid, then the sum argument’s verifier accepts.

Theorem 6.2. The argument described above is a sum argument
in the ROM under the discrete logarithm assumption.

Proof of Theorem 6.2 can be found in Appendix A.2.

Furthermore, Section 7.2 details a method that aggregates sum

arguments in such a way that one runs a single sum argument to

prove that𝑚 vectors v𝑖 all verify v𝑖 [𝑛 − 1] =
∑𝑛−2

𝑗=0 v𝑖 [ 𝑗].

6.5 Range Proofs
We wish to prove that the values committed to in a vector com-

mitment are positive. Existing protocols for range proofs, however,

take as input Pedersen commitments to a single value, e.g., [12].

Using them directly in our construction will increase the size of the

proofs of liability; namely, the size of a proof of liability will linearly

grow with both the arity of the sparse Verkle tree and its depth. We

thus introduce a range proof that takes as input a Pedersen-like

vector commitment to a vector v = (𝑣0, ..., 𝑣𝑛−1) ∈ Z𝑛𝑝 and proves

that for all 𝑖 ∈ [𝑛], 0 ≤ 𝑣𝑖 < 𝑚𝑎𝑥 . The communication complexity

of this proof is 𝑂 (log(𝑛 ·𝑚𝑎𝑥)) = 𝑂 (log(𝑛) + log(𝑚𝑎𝑥)).

6.5.1 Overview. Our range proof proceeds as follows. First, we use
a standard split-and-fold technique [12, 19] to iteratively reduce

the commitment to a vector v = (𝑣0, ..., 𝑣𝑛−1) to a commitment to a

single value 𝑣 . By construction

𝑣 =

𝑛−1∑︁
𝑖=0

𝑓𝑖 (𝑥0, ..., 𝑥log(𝑛)−1)𝑣𝑖 (2)

where (𝑥0, ..., 𝑥log(𝑛)−1) are the challenge sent during the reduction.
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Let 𝐹 be a generator of G, G = (𝐺0, ...,𝐺𝑛−1 ) and H = (𝐻0, ..., 𝐻𝑛−1 ) be two vectors of 𝑛 generators of G.

Let b be the 𝑛-length vector (1, ..., 1, −1) , and 𝐵 the corresponding commitment Hb
.

Let ppIPA be the public parameters of an inner product argument for vectors of length 𝑛, committed to using generators G and H.

Let pp = (ppIPA, 𝐹 ,G,H, 𝐵) be the public parameters of SA, x = 𝑉 the instance and w = (v, 𝑟 ) the corresponding witness, such that 𝑉 =

𝐹𝑟 Gv ∧ v[𝑛 − 1] = ∑𝑛−2
𝑗=0 v[ 𝑗 ].

1: PSA(pp,x,w)→ Φ
2: (w, 𝑟 ′ )←$ Z𝑛𝑝 × Z𝑝
3: 𝑊 ← 𝐹𝑟

′
Gw ⊲ hiding commitment to w

4: 𝑐 ← w · b
5: 𝑥 ← ℎ (𝑐,𝑉 ,𝑊 )
6: 𝜌 ← −𝑟 − 𝑟 ′𝑥
7: 𝑃 ← 𝐹𝜌𝑉𝑊 𝑥𝐵 ⊲ commitment to a = v + 𝑥w and b
8: xIPA ← (𝑃, 𝑐𝑥 ) ⊲ v · b = 0 =⇒ a · b = 𝑐𝑥

9: wIPA ← (a, b)
10: Π ← PIPA (ppIPA,xIPA,wIPA )

11: Φ← (Π,𝑊 , 𝑐, 𝜌 )
12: return Φ

13: VSA(pp,x,Φ)→ 𝑏

14: (Π,𝑊 , 𝑐, 𝜌 ) ← Φ
15: 𝑥 ← ℎ (𝑐,𝑉 ,𝑊 )
16: 𝑃 ← 𝐹𝜌𝑉𝑊 𝑥𝐵

17: xIPA ← (𝑃, 𝑐𝑥 )
18: return VIPA (ppIPA,xIPA,Π)

Figure 6: Sum Argument SA

To prove that 0 ≤ v[𝑖] < 2
𝑚
, we write 𝑣𝑖 as

∑𝑚−1
𝑗=0 𝑣𝑖, 𝑗2

𝑗
and

compute a commitment to 𝑣𝑖, 𝑗 . Next we prove in zero-knowledge

that each 𝑣𝑖, 𝑗 is a bit. What remains is to show that for all 𝑖 ∈ [𝑖],
(𝑣𝑖, 𝑗 ) 𝑗∈[𝑚] actually verify 𝑣𝑖 =

∑𝑚−1
𝑗=0 𝑣𝑖, 𝑗2

𝑗
. To this end, we replace

𝑣𝑖 by
∑𝑚−1

𝑗=0 𝑣𝑖, 𝑗2
𝑗
in Eq. 2.

To optimize the range proof, we follow the approach of Bullet-

proofs [12] that uses a single inner product argument to show that

𝑣𝑖, 𝑗 are bits and that they satisfy 𝑣𝑖 =
∑𝑚−1

𝑗=0 𝑣𝑖, 𝑗2
𝑗
. Note that thanks

to Eq. 2, we are able to prove that a committed vector is in the valid

range in one go. Bulletproofs, on the other hand, only accommodate

range proofs on single value commitments.

6.5.2 The Iterative Reduction. As previously mentioned, we first

reduce vector v = (𝑣0, ..., 𝑣𝑛−1) to a single value. To this end, we

use the iterative reduction technique from Bootle et al. [19], which

consists of 𝜇 = log(𝑛) iterations, such that at the end of each

iteration, the length of v is halved. The reduction concludes by

outputting a single value 𝑣 that is a function of {𝑣𝑖 }𝑖∈[𝑛] and a

sequence of challenges {𝑥𝑘 }𝑘∈[𝜇 ] .We denote this protocol byRdx =
(PRdx,VRdx).

Theorem 6.3. Let v ∈ Z𝑛𝑝 and 𝜇 = log(𝑛). Given a sequence of
uniformly random 𝑥𝑘 ∈ Z𝑝 for 𝑘 ∈ [𝜇 − 1], the reduction protocol
Rdx (Figure 4) reduces v to the value

𝑣 =

𝑛−1∑︁
𝑖=0

𝑣𝑖

( 𝜇−1∏
𝑘=0

𝑥
Bits(𝑖 ) [𝑘 ]
𝑘

)
. (3)

where Bits(𝑖) = (𝑏0, 𝑏1, . . . , 𝑏𝜇−1) is the bit representation of 𝑖 and
𝑏0 is the least significant bit.

Since v is reduced to a single value 𝑣 which can be described

using a closed-form function (Equation 3), the prover can prove

statements about v using 𝑣 instead. For a complete description refer

to Figure 4 or Bootle et al. [19].

6.5.3 The Range Proof. The goal is to prove that the vector v
committed in 𝑉 = 𝐹𝑟

∏𝑛−1
𝑖=0 𝐺

v[𝑖 ]
𝑖

verifies the following: ∀𝑖 ∈
[𝑛] : 0 ≤ v[𝑖] < 𝑚𝑎𝑥 . Assume that 𝑚𝑎𝑥 = 2

𝑚
. Proving that

0 ≤ v[𝑖] < 𝑚𝑎𝑥 is tantamount to showing that v[𝑖] = ∑𝑚−1
𝑗=0 2

𝑗𝑣𝑖, 𝑗

for some 𝑣𝑖, 𝑗 ∈ {0, 1}. Figure 7 depicts our range proof over vector
commitments.

We start our range proof by executing PRdx on v. This yields a
value 𝑣 satisfying Equation 3. Calling PRdx on v, however, is not
zero knowledge. In particular, if PRdx is invoked 𝑛 times on v, then
one could setup a system of 𝑛 linear equations with 𝑛 unknowns

and easily recover v.
Tomitigate this attack, we blind v using a random vectorw. More

precisely, we compute a challenge 𝑥 and run PRdx on input vector

u = v + 𝑥w and commitment𝑈 (line 14). This returns the proof Γ =

(Δ, 𝑢) where 𝑢 =
∑𝑛−1
𝑖=0 u[𝑖] 𝑓𝑖 , and 𝑓𝑖 =

∏𝜇−1
𝑘=0

𝑥
Bits(𝑖 ) [𝑘 ]
𝑘

,∀𝑖 ∈ [𝑛].
Given that u = v + 𝑥w and v[𝑖] = ∑𝑚−1

𝑗=0 2
𝑗𝑣𝑖, 𝑗 , this equality could

be re-written as

𝑢 =

𝑛−1∑︁
𝑖=0

v[𝑖] 𝑓𝑖 + 𝑥w[𝑖] 𝑓𝑖 =
𝑛−1∑︁
𝑖=0

𝑚−1∑︁
𝑗=0

𝑣𝑖, 𝑗 𝑓𝑖2
𝑗 +

𝑛−1∑︁
𝑖=0

𝑥w[𝑖] 𝑓𝑖

Let v̂ = (𝑣0,0, ..., 𝑣𝑛−1,𝑚−1 ∥ w), f = (𝑓0, ..., 𝑓𝑛−1) and d = (𝑑𝑖, 𝑗 ∥
𝑥f) with 𝑑𝑖, 𝑗 = 𝑓𝑖2𝑗 for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚]. Value 𝑢 can thus be

expressed as the inner product of v̂ and d, i.e.,

𝑢 = v̂ · d (4)

Proving the correctness of this inner product alone is not sufficient

to guarantee that all v’s elements are in the correct range. Actually,

we must additionally show that the 𝑣𝑖, 𝑗 ’s are bits.

Let v̂[: 𝑛𝑚] = (𝑣0,0, ..., 𝑣𝑛−1,𝑚−1) and ŵ its bit complement (lines

5 and 6, respectively). If v̂[: 𝑛𝑚] is indeed comprised of bits, then

the following equalities always hold:

ŵ − 1𝑛𝑚 + v̂[: 𝑛𝑚] = 0𝑛𝑚 (5)

v̂[: 𝑛𝑚] ◦ ŵ = 0𝑛𝑚 (6)

From here onward, our approach proceeds similarly to that of

Bulletproofs, in that, we express Equations 4, 5 and 6 as the inner

product of two vectors that are functions of v̂ and ŵ, and then call

the IPA on these two vectors. In the remainder of this section, we

show how we obtain these two vectors.
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Let (𝐺,𝐻, 𝐹 ) be three generators of G, G = (𝐺0, ...,𝐺𝑛−1 ) be a vector of 𝑛 generators.

Let H = (𝐻0, ..., 𝐻𝑛 (𝑚+1)−1 ) and F = (𝐹0, ..., 𝐹𝑛 (𝑚+1)−1 ) be two vectors of 𝑛 (𝑚 + 1) generators of G.
Let ppIPA be the public parameters of an inner product argument of vectors of length 𝑛 (𝑚 + 1) .
Let pp = (ppIPA,𝐺,𝐻, 𝐹,G,H, F) be the public parameters of argument RP, x = 𝑉 the instance andw = (v, 𝑟 ) the corresponding witness, such that

𝑉 = 𝐹𝑟 Gv
, v[𝑖 ] = ∑𝑚−1

𝑗=0 𝑣𝑖,𝑗 2
𝑗
and 𝑣𝑖,𝑗 ∈ {0, 1} for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚].

1: PRP(pp,x,w)→ Ψ
2: (w, 𝑟 ′ )←$ Z𝑛𝑝 × Z𝑝
3: 𝑊 ← 𝐹𝑟

′
Gw

4: v̂𝑖 ← Bits(v[𝑖 ] )
5: v̂← (v̂0 ∥ ... ∥ v̂𝑛−1 ∥ w)
6: ŵ← (1𝑛𝑚 − v̂[: 𝑛𝑚] )
7: 𝜈←$ Z𝑝
8: 𝑄 ← 𝐹 𝜈Hv̂F[: 𝑛𝑚]ŵ
9: 𝑥 ← ℎ (𝑉 ,𝑊 ,𝑄 )
10: 𝛾 ← −𝑟 − 𝑥𝑟 ′
11: 𝑈 ← 𝐹𝛾𝑉𝑊 𝑥 ⊲ commitment to v + 𝑥w
12: ppRdx ← G
13: (wRdx,xRdx ) ← (v + 𝑥w,𝑈 )
14: (Γ, x) ← PRdx (ppRdx,xRdx,wRdx )
15: (𝑥0, ..., 𝑥𝜇−1 ) ← x
16: for 0 ≤ 𝑖 ≤ 𝑛 − 1 do
17: 𝑓𝑖 ←

∏𝜇−1
𝑘=0

𝑥
Bits(𝑖 ) [𝑘 ]
𝑘

18: f ← (𝑓0, ..., 𝑓𝑛−1 )
19: for 0 ≤ 𝑖 ≤ 𝑛 − 1 do
20: for 0 ≤ 𝑗 ≤ 𝑚 − 1 do
21: 𝑑𝑖,𝑗 ← 2

𝑗 𝑓𝑖

22: d← (𝑑0,0, ..., 𝑑𝑛−1,𝑚−1 ∥ 𝑥f )
23: (𝜂, s, t)←$ Z𝑝 × Z𝑛𝑚+𝑛𝑝 × Z𝑛𝑚𝑝
24: 𝑅 ← 𝐹𝜂HsF[: 𝑛𝑚]t
25: (𝑦0, 𝑦1 ) ← (ℎ (𝑈 ,𝑄, 𝑅, 0), ℎ (𝑈 ,𝑄, 𝑅, 1) )
26: (y0, y1 ) ← ( (1, 𝑦0 ..., 𝑦𝑛𝑚−1

0
), 𝑦11𝑛𝑚 )

27: a′ ← v̂ + (y1 | |0𝑛 )
28: b′ ← 𝑦2

1
d + 𝑦1 (y0 ∥ 0𝑛 ) + ( (ŵ ◦ y0 ) ∥ 0𝑛 )

29: 𝑐1 ← a′ [: 𝑛𝑚] · (y0 ◦ t) + s · b′
30: 𝑐2 ← s[: 𝑛𝑚] · (y0 ◦ t)
31: (𝜏1, 𝜏2 )←$ Z𝑝 × Z𝑝
32: (𝐶1,𝐶2 ) ← (𝐺𝑐1𝐻𝜏1 ,𝐺𝑐2𝐻𝜏2 )
33: 𝑧 ← ℎ (𝑈 ,𝑄, 𝑅,𝐶1,𝐶2 )
34: 𝜌 ← −𝜈 − 𝜂𝑧
35: 𝜏 ← 𝜏1𝑧 + 𝜏2𝑧2

36: F′ ← (𝐹0, 𝐹
𝑦−1
0

1
, ..., 𝐹

𝑦
−(𝑛 (𝑚+1)−1)
0

𝑛 (𝑚+1)−1 )

37: (a, b) ← (a′ + 𝑧s, b′ + 𝑧 ( (y0 ◦ t) ∥ 0𝑛 ) )
⊲ 𝑃 is a commitment to a and b with generators H and F′

38: 𝑃 ← 𝐹𝜌𝑄𝑅𝑧H[: 𝑛𝑚]y1F′𝑦
2

1
dF[: 𝑛𝑚]y1

39: xIPA ← (𝑃, 𝑐 = a · b)
40: wIPA ← (a, b)
41: Π ← PIPA (ppIPA,xIPA,wIPA )
42: return (Γ,𝑊 ,𝛾,Π, 𝑐,𝑄, 𝑅,𝐶1,𝐶2, 𝜌, 𝜏 )

43: VRP(pp,x,Ψ)→ 𝑏

44: (Γ,𝑊 ,𝛾,Π, 𝑐,𝑄, 𝑅,𝐶1,𝐶2, 𝜌, 𝜏 ) ← Ψ
45: 𝑥 ← ℎ (𝑉 ,𝑊 ,𝑄 )
46: 𝑈 ← 𝐹𝛾𝑉𝑊 𝑥

47: ppRdx ← G
48: xRdx ← 𝑈

49: (𝑏0, x,𝑢 ) ← VRdx (ppRdx,xRdx, Γ)
50: if 𝑏0 = 0 then
51: return 0

52: for 0 ≤ 𝑖 ≤ 𝑛 − 1 do
53: 𝑓𝑖 ←

∏𝜇−1
𝑘=0

𝑥
Bits(𝑖 ) [𝑘 ]
𝑘

54: f ← (𝑓0, ..., 𝑓𝑛−1 )
55: for 0 ≤ 𝑖 ≤ 𝑛 − 1 do
56: for 0 ≤ 𝑗 ≤ 𝑚 − 1 do
57: 𝑑𝑖,𝑗 ← 2

𝑗 𝑓𝑖

58: d← (𝑑0,0, ..., 𝑑𝑛−1,𝑚−1 ∥ 𝑥f )
59: (𝑦0, 𝑦1 ) ← (ℎ (𝑈 ,𝑄, 𝑅, 0), ℎ (𝑈 ,𝑄, 𝑅, 1) )
60: (y0, y1 ) ← ( (1, 𝑦0 ..., 𝑦𝑛𝑚−1

0
), 𝑦11𝑛𝑚 )

61: 𝑧 ← ℎ (𝑈 ,𝑄, 𝑅,𝐶1,𝐶2 )
62: (𝛽1, 𝛽2, 𝛽3 ) ← (1𝑛𝑚 · y0, 1𝑛𝑚 · y0 +𝑢, 1𝑛𝑚 · d[: 𝑛𝑚] )
63: 𝑐0 ← 𝛽3𝑦

3

1
+ 𝛽2𝑦2

1
+ 𝛽1𝑦1

64: if 𝐶𝑧
1
𝐶𝑧2

2
𝐺𝑐0 ≠ 𝐺𝑐𝐻𝜏 then

65: return 0

66: F′ ← (𝐹0, 𝐹
𝑦−1
0

1
, ..., 𝐹

𝑦
−(𝑛 (𝑚+1)−1)
0

𝑛 (𝑚+1)−1 )

67: 𝑃 ← 𝐹𝜌𝑄𝑅𝑧H[: 𝑛𝑚]y1F′𝑦
2

1
dF[: 𝑛𝑚]y1

68: xIPA ← (𝑃, 𝑐 )
69: return VIPA (ppIPA,xIPA,Π)

Figure 7: Range proof over vector commitments RP.

To combine multiple equations into one, we can take a random

linear combination of those constraints as chosen by the verifier.

In particular, note that if e = 0𝑛𝑚 , then ∀y0 = (1, 𝑦0, . . . , 𝑦𝑛𝑚−1
0

),
e · y0 = 0. We can thus re-write Equations 5 and 6 as

(ŵ − 1𝑛𝑚 + v̂[: 𝑛𝑚]) · y0 = 0 (7)

(v̂[: 𝑛𝑚] ◦ ŵ) · y0 = v̂[: 𝑛𝑚] · (ŵ ◦ y0) = 0. (8)

Equalities 4, 7 and 8 can be further combined into a single equal-

ity by applying the same technique again using some 𝑦1 ∈ Z𝑝 :

𝑦2
1
(v̂ ·d−𝑢) +𝑦1 (ŵ−1𝑛𝑚 + v̂[: 𝑛𝑚]) ·y0+ v̂[: 𝑛𝑚] · (ŵ◦y0) = 0 (9)

Let a′ and b′ be two vectors defined as:

a′ = v̂ + (y1∥0𝑛)
b′ = 𝑦2

1
d + 𝑦1 (y0∥0𝑛) + ((ŵ ◦ y0)∥0𝑛)

Accordingly, inner product a′ · b′ corresponds to

𝑦2
1
v̂ · d + 𝑦1v̂ · (y0∥0𝑛) + v̂ · ((ŵ ◦ y0)∥0𝑛) + 𝑦21 (y1∥0

𝑛) · d
+ 𝑦1 (y0∥0𝑛) · (y1∥0𝑛) + (y1∥0𝑛) · ((ŵ ◦ y0)∥0𝑛) .

Note that if Equation 9 holds, then:

a′ · b′ = (1𝑛𝑚 · y0)𝑦31 + (1
𝑛𝑚 · y0 + 𝑢)𝑦21 + (1

𝑛𝑚 · d[: 𝑛𝑚])𝑦1 .
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Since the IPA is not zero-knowledge, the prover cannot call it

with a′ and b′, as this would leak information about v̂ and ŵ. In-

stead, it invokes it with blinded vectors a and b such that the con-

stant term of ⟨a, b⟩ is actually ⟨a′, b′⟩. Thus, proving that the inner

product ⟨a, b⟩ is computed correctly implies that ⟨a′, b′⟩ is also
correct. We compute a and b as follows.

a = a′ + 𝑧s = (v̂ + 𝑧s) + (y1∥0𝑛)
b = b′ + 𝑧 (y0 ◦ t)∥0𝑛 = 𝑦2

1
d + 𝑦1 (y0∥0𝑛) + ((ŵ + 𝑧t) ◦ y0)∥0𝑛

where 𝑧 is a random element in Z𝑝 and s and t are two random

vectors of length 𝑛𝑚 + 𝑛 and 𝑛𝑚 respectively.

We now show how to compute 𝑦0, 𝑦1, 𝑧 in a way that guarantees

the soundness of the range proof. Let H = (𝐻0, ..., 𝐻𝑛 (𝑚+1)−1) and
F = (𝐹0, ..., 𝐹𝑛 (𝑚+1)−1) be two vectors of 𝑛(𝑚 + 1) generators of G.
The prover first computes 𝑄 = 𝐹 𝜈Hv̂F[: 𝑛𝑚]ŵ a commitment to

vectors v̂ and ŵ (line 8), and a commitment 𝑅 = 𝐹𝜂HsF[: 𝑛𝑚]t to
vectors s and t (line 24). It then computes 𝑦0 and 𝑦1 as ℎ(𝑈 ,𝑄, 𝑅, 0)
and ℎ(𝑈 ,𝑄, 𝑅, 1) respectively (lines 25). Notice that

a · b = 𝑐0 + 𝑐1𝑧 + 𝑐2𝑧2, where
𝑐0 = a′ · b′ ; 𝑐1 = a′ [: 𝑛𝑚] · (y0 ◦ t) + s · b′

𝑐2 = s[: 𝑛𝑚] · (y0 ◦ t)
Correspondingly, the prover computes commitments 𝐶1 = 𝐺

𝑐1𝐻𝜏1

and 𝐶2 = 𝐺
𝑐2𝐻𝜏2

for random 𝜏1 and 𝜏2 (line 32), and then sets 𝑧 to

ℎ(𝑈 ,𝑄, 𝑅,𝐶1,𝐶2) (line 33).
The next step of the prover is to compute for the IPA the com-

mitment of vectors a and b as a function of the commitments 𝑄

and 𝑅. Notice that 𝑄 is a commitment to vectors v̂ and ŵ ◦ y0

using generators H and F′ = (𝐹0, 𝐹
𝑦−1
0

1
, ..., 𝐹

𝑦
−(𝑛 (𝑚+1)−1)
0

𝑛 (𝑚+1)−1 ) (line 36).
Now to produce a commitment 𝑃 for vectors a and b with gener-

ators H and F′, the prover computes 𝜌 = −𝜈 − 𝜂𝑧 and sets 𝑃 to

𝐹𝜌𝑄𝑅𝑧H[: 𝑛𝑚]y1F′𝑦
2

1
dF[: 𝑛𝑚]y1 (line 38).

The prover concludes by calling PIPA on 𝑃 and 𝑐 = a · b.
To verify the correctness,V proceeds as follows:

1. Run the Rdx verifier to check the correctness of 𝑢 relative to

commitment𝑈 and obtain the sequence of challenges x. If the
Rdx verifier rejects, then reject (lines 49 − 51).

2. Compute d as a function of challenges 𝑥 and x (lines 52 − 58).
3. Compute 𝑐0 = (1𝑛𝑚 ·y0)𝑦1 + (1𝑛𝑚 ·y0 +𝑢)𝑦2

1
+ (1𝑛𝑚 ·d[: 𝑛𝑚])𝑦3

1

(line 62 − 63).
4. Check that 𝑐 is well formed by verifying that𝐶𝑧

1
𝐶𝑧

2

2
𝐺𝑐0 = 𝐺𝑐0𝐻𝜏

.

If the equation does not hold, reject (lines 64 − 65).
5. Compute commitment 𝑃 as a function of commitments 𝑄 and

𝑅 and run the IPA’s verifier on 𝑃 and 𝑐 , and with generators H
and F′ (lines 66 − 69). If the IPA’s verifier accepts, then accept.

Theorem 6.4. The proof system described in Figure 7 is a range
proof over hiding vector commitments in the ROM under the discrete
logarithm assumption.

The proof of Theorem 6.4 can be found in Appendix A.4.

7 OPTIMIZATIONS
7.1 Aggregating Opening Equality Arguments
We now describe how to aggregate OEA to reduce the number

of pairings performed during PoL verification by almost half. Let

V = (𝑉0, ...,𝑉𝑙−1) and W = (𝑊0, ...,𝑊𝑙−1) be vectors in G𝑙 such that

∀𝑘 ∈ [𝑙], 𝑉𝑘 and𝑊𝑘 commit to the same value 𝑣𝑘 at indices 𝑖𝑘 and

𝑗𝑘 . This translates to the following: ∃!(Ω𝑉 ,𝑘 ,Ω𝑊,𝑘 ), 𝑘 ∈ [𝑙] such
that:

∀𝑘 ∈ [𝑙] : 𝑒 (𝑉𝑘 , 𝐹𝑛−𝑖𝑘 ) = 𝑒 (Ω𝑉 ,𝑘 ,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑣𝑘

𝑒 (𝑊𝑘 , 𝐹𝑛− 𝑗𝑘 ) = 𝑒 (Ω𝑊,𝑘 ,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑣𝑘

Let V̂ = (𝑉0, ...,𝑉𝑙−1) and Ŵ = (𝑊0, ...,𝑊𝑙−1) be vectors in G𝑙
such that ∀𝑘 ∈ [𝑙]: 𝑉𝑘 and𝑊𝑘 commits to the same value 𝑢𝑘 at

indices 𝑖𝑘 and 𝑗𝑘 . Therefore, ∀𝑘 ∈ [𝑙], ∃!(Ω̂𝑉 ,𝑘 , Ω̂𝑊,𝑘 ) such that:

𝑒 (𝑉𝑘 , 𝐹𝑛−𝑖𝑘 ) = 𝑒 (Ω̂𝑉 ,𝑘 ,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑢𝑘

𝑒 (𝑊𝑘 , 𝐹𝑛− 𝑗𝑘 ) = 𝑒 (Ω̂𝑊,𝑘 ,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑢𝑘

The additive homomorphism of Pointproofs implies that for any

𝑥 ∈ Z𝑝 , 𝑎𝑘 = 𝑣𝑘 + 𝑥𝑢𝑘 opens commitments 𝑉𝑘𝑉
𝑥
𝑘

and𝑊𝑘𝑊
𝑥
𝑘

at

indices 𝑖𝑘 and 𝑗𝑘 respectively. More precisely, we have

∀𝑘 ∈ [𝑙] : 𝑒 (𝑉𝑘𝑉 𝑥
𝑘
, 𝐹𝑛−𝑖𝑘 ) = 𝑒 (Ω𝑉 ,𝑘 Ω̂

𝑥
𝑉 ,𝑘

,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑎𝑘

𝑒 (𝑊𝑘𝑊
𝑥
𝑘
, 𝐹𝑛− 𝑗𝑘 ) = 𝑒 (Ω𝑊,𝑘 Ω̂

𝑥
𝑊 ,𝑘

,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑎𝑘

The aggregation of PointProofs allows us to write these verifica-

tion equations as one equality.

𝑙−1∏
𝑘=0

𝑒 (𝑉 ′
𝑘
, 𝐹𝑛−𝑖𝑘 )𝑡2𝑘 𝑒 (𝑊 ′𝑘 , 𝐹𝑛− 𝑗𝑘 )

𝑡2𝑘+1 = 𝑒 (Ω,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑐 (10)

Where

𝑐 =

𝑙−1∑︁
𝑘=0

(𝑡
2𝑘 + 𝑡2𝑘+1)𝑎𝑘

𝑉 ′
𝑘
= 𝑉𝑘𝑉

𝑥
𝑘
; 𝑊 ′

𝑘
=𝑊𝑘𝑊

𝑥
𝑘

Ω =

𝑙−1∏
𝑘=0

(Ω𝑉 ,𝑘 Ω̂
𝑥
𝑉 ,𝑘
)𝑡2𝑘 (Ω𝑊,𝑘 Ω̂

𝑥
𝑊 ,𝑘
)𝑡2𝑘+1

𝑡𝑘 = ℎ(𝑘,𝑉 ′
0
, ...,𝑉 ′

𝑙−1,𝑊
′
0
, ...,𝑊 ′

𝑙−1, i, j, a)
i = (𝑖1, ..., 𝑖𝑙−1) ; j = ( 𝑗0, ..., 𝑗𝑙−1) ; a = (𝑎0, ..., 𝑎𝑙−1)

Similar to OEA, the idea of the aggregated argument is that

if (𝑢0, ..., 𝑢𝑙−1) are random, then (a,Ω) can be sent in the clear,

enabling the verifier to check Equation 10 directly.

The soundness of the aggregation of Pointproofs ensures that for

all 𝑘 ∈ [𝑙], 𝑎𝑘 opens𝑉 ′
𝑘
and𝑊 ′

𝑘
at indices 𝑖𝑘 and 𝑗𝑘 respectively. Fur-

thermore, if 𝑣𝑘 and 𝑣𝑘 are the 𝑖
th

𝑘
element of the vectors committed in

𝑉𝑘 and𝑉𝑘 respectively, and𝑤𝑘 and �̂�𝑘 the 𝑗 th
𝑘

element of the vectors

committed in𝑊𝑘 and𝑊𝑘 respectively, then the binding property

of Pointproofs entails that 𝑎𝑘 = 𝑣𝑘 + 𝑥𝑣𝑘 = 𝑤𝑘 + 𝑥�̂�𝑘 ,∀𝑘 ∈ [𝑙].
Now if 𝑥 is computed as ℎ(V,W, V̂, Ŵ), then we can use the

Shwartz-Zippel lemma to show that 𝑣𝑘 = 𝑤𝑘 and 𝑣𝑘 = �̂�𝑘 with all

but negligible probability 1/𝑝 .
This demonstrates that if Equation 10 holds, then for all 𝑘 ∈ [𝑙],

𝑉𝑘 and𝑊𝑘 commits to the same value 𝑣𝑘 at indices 𝑖𝑘 and 𝑗𝑘 .

Finally, the argument is zero-knowledge. A simulator with knowl-

edge of the trapdoor 𝛼 of Pointproofs and control over a random

oracle, can randomly select vectors a, V̂ and Ŵ, and successfully

find Ω that satisfies Equation 10.
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Let ppVC = (𝐺, F) be the public parameters of the hiding vector commitment described in Section 6.2.

Let G = (𝐺0, ...,𝐺𝑙−1 ),H = (𝐻0, ..., 𝐻𝑙−1 ) and 𝐹 be generators of G.

Let ppIPA be the public parameters of an inner product argument for vectors of length 𝑙 , committed to using generators G and H.

Let V = (𝑉0, ...,𝑉𝑙−1 ) and W = (𝑊0, ...,𝑊𝑙−1 ) be two vectors in G𝑙 , and v = (𝑣0, ..., 𝑣𝑙−1 ) be a vector in Z𝑙𝑝 .
Let i = (𝑖0, ..., 𝑖𝑙−1 ) and j = ( 𝑗0, ..., 𝑗𝑙−1 ) be two vectors in [𝑛].
Let pp = (ppVC, 𝐹 ,G,H, ppIPA ) be the public parameters of AggOEA, x = (V,W, i, j) the instance andw = (v,Ω𝑉 ,Ω𝑊 ) the corresponding witness,
such that: ∀𝑘 ∈ [𝑙 ] : VerOpen(ppVC,𝑉𝑘 , 𝑖𝑘 , 𝑣𝑘 ,Ω𝑉 [𝑘 ] ) = VerOpen(ppVC,𝑊𝑘 , 𝑗𝑘 , 𝑣𝑘 ,Ω𝑊 [𝑘 ] ) = 1.

1: PAggOEA(pp,x,w)→ Υ
2: for 0 ≤ 𝑘 ≤ 𝑙 − 1 do
3: (𝑢𝑘 , 𝜂𝑘 , 𝜈𝑘 )←$ Z𝑝 × Z𝑝 × Z𝑝

⊲ 𝑉𝑘 is a vector commitment to (0𝑖𝑘 ∥ 𝑢𝑘 ∥ 0𝑛−𝑖𝑘 −1 )
4: (𝑉𝑘 , Ω̂𝑉 ,𝑘 ) ← (𝐹

𝜈𝑘
𝑛 𝐹

𝑢𝑘
𝑖𝑘

, 𝐹
𝜈𝑘
2𝑛−𝑖𝑘 )

⊲𝑊𝑘 is a hiding commitment to (0𝑗𝑘 ∥ 𝑢𝑘 ∥ 0𝑛− 𝑗𝑘 −1 )
5: (𝑊𝑘 , Ω̂𝑊,𝑘 ) ← (𝐹

𝜂𝑘
𝑛 𝐹

𝑢𝑘
𝑗𝑘

, 𝐹
𝜂𝑘
2𝑛− 𝑗𝑘 )

6: V̂← (𝑉0, ...,𝑉𝑙−1 )
7: Ŵ← (𝑊0, ...,𝑊𝑙−1 )
8: 𝑥 ← ℎ (V,W, V̂, Ŵ)
9: u← (𝑢0, ...,𝑢𝑙−1 )
10: (𝑟 ′, 𝑟 ′′ ) ← Z𝑝 × Z𝑝
11: (𝑈 ,𝑉 ) ← (𝐹𝑟 ′Gu, 𝐹𝑟

′′
Gv )

12: for 0 ≤ 𝑘 ≤ 2𝑙 − 1 do
⊲𝑈 𝑥𝑉 is a hiding commitment to v + 𝑥u

13: 𝑡𝑘 ← ℎ (𝑘,VV̂𝑥 ,WŴ𝑥 , i, j,𝑈 𝑥𝑉 )
14: Ω ←∏𝑙−1

𝑘=0
(Ω𝑉 [𝑘 ]Ω̂𝑥

𝑉 ,𝑘
)𝑡2𝑘 (Ω𝑊 [𝑘 ]Ω̂𝑥

𝑊 ,𝑘
)𝑡2𝑘+1

15: a← (𝑣0 + 𝑥𝑢0, ..., 𝑣𝑙−1 + 𝑥𝑢𝑙−1 )
16: b← (𝑡0 + 𝑡1, ..., 𝑡2𝑙−2 + 𝑡2𝑙−1 )

17: 𝜌 ← 𝑟 ′′ − 𝑥𝑟 ′
18: 𝑃 ← 𝐹𝜌𝑈 𝑥𝑉Hb ⊲ 𝑃 is a commitment to a and b
19: xIPA ← (𝑃, a · b)
20: wIPA ← (a, b)
21: Π ← PIPA (ppIPA,xIPA,wIPA )
22: Υ← (Π, 𝑐, 𝜌,𝑈 ,𝑉 , V̂, Ŵ,Ω)
23: return Υ

24: VAggOEA(pp,x, Υ)→ 𝑏

25: (Π, 𝑐, 𝜌,𝑈 ,𝑉 , V̂, Ŵ,Ω) ← Υ

26: 𝑥 ← ℎ (V,W, V̂, Ŵ)
27: for 0 ≤ 𝑘 ≤ 2𝑙 − 1 do
28: 𝑡𝑘 ← ℎ (𝑘,VV̂𝑥 ,WŴ𝑥 , i, j,𝑈 𝑥𝑉 )

29: if
∏𝑙−1

𝑘=0
𝑒 ( (𝑉𝑘𝑉 𝑥

𝑘
)𝑡2𝑘 ,𝐹𝑛−𝑖𝑘 )𝑒 ( (𝑊𝑘𝑊

𝑥
𝑘
)𝑡2𝑘+1 ,𝐹𝑛− 𝑗𝑘 )

𝑒 (Ω,𝐺 )𝑒 (𝐹0,𝐹𝑛 )𝑐 ≠ 1 then
30: return 0

31: else
32: b← (𝑡0 + 𝑡1, ..., 𝑡2𝑙−2 + 𝑡2𝑙−1 )
33: 𝑃 ← 𝐹𝜌𝑈 𝑥𝑉Hb

34: xIPA ← (𝑃, 𝑐 )
35: return VIPA (ppIPA,xIPA,Π)

Figure 8: Opening Equality Argument AggOEA

Inner product arguments to reduce communication cost. Let b =

(𝑡0 + 𝑡1, ..., 𝑡2𝑙−2 + 𝑡2𝑙−1). It is easy to see that 𝑐 in Equation 10 corre-

sponds to the inner product a·b. Therefore, we can leverage an inner
product argument to avoid sending a. It should be noted however,

that decreasing the communication cost incurs additional compu-

tational overhead during proof generation and verification. As a

result, a tradeoff analysis should be conducted to assess whether

not sending a is justifiable.

Figure 8 describes in details our aggregated opening equality

argument that makes use of the inner product argument to avoid

sending vector a.
Finally, note that in our PoL, the opening equality argument

takes place between two vector commitments𝑉 and𝑊 such that𝑉

is always opened at the last index of the vector. In other words, the

verification of Equation 10 in our PoL can be re-written as follows:

𝑙−1∏
𝑘=0

𝑒 (𝑉 ′
𝑘
, 𝐹𝑛−𝑖𝑘 )𝑡2𝑘 𝑒 (𝑊 ′𝑘 , 𝐹1)

𝑡2𝑘+1

= 𝑒 (
𝑙−1∏
𝑘=0

𝑊 ′
𝑘
𝑡2𝑘+1 , 𝐹1)

𝑙−1∏
𝑘=0

𝑒 (𝑉 ′
𝑘
𝑡2𝑘 , 𝐹𝑛−𝑖𝑘 ) = 𝑒 (Ω,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑐

This reduces the number of pairings in PoL from 2𝑙 + 2 to 𝑙 + 3.

Theorem 7.1. Figure 8 is an aggregated opening equality argu-
ment for Pointproofs vector commitments ROM.

7.2 Aggregating Sum Arguments

Recall that b is the 𝑛-dimensional vector (1, ..., 1,−1), and that

the sum argument presented in Section 6.4 proves that a hiding

Pedersen commitment 𝑉 commits to a vector v such that v · b = 0.

The aggregation of SAs builds upon two observations:

1. If ∀𝑖 ∈ [𝑙], v𝑖 · b = 0, then for any vector t = (𝑡0, ..., 𝑡𝑙−1),
t[v0, ..., v𝑙−1]𝑇 · b = 0, where [v0, ..., v𝑙−1] is the matrix whose

𝑗 th column is v𝑖 and [v0, ..., v𝑙−1]𝑇 is its transpose.

2. If ∀𝑖 ∈ [𝑙],𝑉𝑖 = 𝐹𝑟𝑖 Gv𝑖
is a Pedersen commitment of v𝑖 using

randomness 𝑟𝑖 , then𝑉 =
∏𝑙−1

𝑖=0 𝑉
𝑡𝑖
𝑖

is a Pedersen commitment to

t[v0, ..., v𝑙−1]𝑇 with randomness t · r, where r = (𝑟0, ..., 𝑟𝑙−1) .
Accordingly, we call sum argumentPSA on vector t[v0, ..., v𝑙−1]𝑇

and randomness t · r.
To argue the soundness of the aggregation, let 𝑡 = ℎ(𝑉0, ...,𝑉𝑙−1).

If ∀𝑖 ∈ [𝑙], 𝑡𝑖 is computed as 𝑡𝑖 , then the Schwartz Zippel lemma

entails that if t[v0, ..., v𝑙−1]𝑇 · b =
∑𝑙−1
𝑖=0 𝑡

𝑖 (v𝑖 · b) = 0, then v𝑖 · b =

0,∀𝑖 ∈ [𝑙] with all but negligible probability (𝑙 − 1)/𝑝 .
For more details on the aggregation of the sum argument, refer

to Figure 9.

Theorem 7.2. Let v𝑖 ∈ Z𝑛𝑝 and 𝑟𝑖 ∈ Z𝑝 , ∀𝑖 ∈ [𝑙]. The above
argument is a non-interactive zero-knowledge argument for relation:

w =

(
(v𝑖 , 𝑟𝑖 )𝑖∈[𝑙 ]

)
;x = (𝑉0, ...,𝑉𝑙−1) :
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Let ppSA = (ppIPA,𝐺, 𝐹,G,H, 𝐵) be the public parameters of the sum argument described in Figure 6.

Let pp = ppSA be the public parameters of AggSA, x = (𝑉0, ...,𝑉𝑙−1 ) the instance andw = (v0, ..., v𝑙−1, 𝑟0, ..., 𝑟𝑙−1 ) the corresponding witness, such

that ∀ 𝑖 ∈ [𝑙 ],𝑉𝑖 = 𝐹𝑟𝑖 Gv𝑖 ∧ v𝑖 [𝑛] =
∑𝑛−2

𝑗=0 v𝑖 [ 𝑗 ].
Let [v0, ..., v𝑙−1 ] denote the matrix with columns v𝑖 and [v0, ..., v𝑙−1 ]𝑇 its transpose. Let V denote vector (𝑉0, ...,𝑉𝑙−1 ) and r denote vector (𝑟0, ..., 𝑟𝑙−1 ) .

1: PAggSA(pp,x,w)→ Φ
2: 𝑡 ← ℎ (V)
3: t← (1, 𝑡, ..., 𝑡𝑙−1 )
4: v← t[v0, ..., v𝑙−1 ]𝑇
5: (𝑉 , 𝑟 ) ← (Vt, r · t)
6: xSA ← (G, 𝐹 ,𝑉 )
7: wSA ← (v, 𝑟 )
8: return Φ← PSA (ppSA,xSA,wSA )

9: VAggSA(pp,x,Φ)→ 𝑏

10: 𝑡 ← ℎ (V)
11: t← (1, 𝑡, ..., 𝑡𝑙−1 )
12: 𝑉 ← Vt

13: xSA ← (G, 𝐹 ,𝑉 )
14: return VSA (ppSA,xSA,Π)

Figure 9: Aggregated Sum Argument AggSA

∀𝑖 ∈ [𝑙],𝑉𝑖 = 𝐹𝑟𝑖 Gv𝑖 ∧ v𝑖 [𝑛 − 1] =
𝑛−2∑︁
𝑗=0

𝑣𝑖 [ 𝑗]

in the ROM under the discrete logarithm assumption.

7.3 Aggregating Range Proofs
Assume that we have 𝑙 vectors v0, ..., v𝑙−1 of length𝑛 andwewish to
prove that all elements of these vectors are in range [2𝑚]. We now

describe how to leverage parts of the range proof to aggregate the

range proofs for these vectors. This aggregation reduces the com-

munication cost of the proofs from 𝑂 (𝑙 log(𝑛𝑚)) to 𝑂 (log(𝑙𝑛𝑚)).
For all 𝑘 ∈ [𝑙] let 𝑉𝑘 = 𝐹𝑟𝑘

∏𝑛−1
𝑖=0 𝐺

v𝑘 [𝑖 ]
𝑖

be the hiding commit-

ment to vector v𝑘 using randomness 𝑟𝑘 . Let [v0, ..., v𝑙−1] be the
matrix whose columns are vectors v𝑘 and [v0, ..., v𝑙−1]𝑇 its trans-

pose. Let 𝑦 ∈ Z𝑝 and y = (1, 𝑦, ..., 𝑦𝑙−1). Observe that if we run

PRdx on vector v′ = y[v0, ..., v𝑙−1]𝑇 , we obtain

𝑣 ′ =
𝑛−1∑︁
𝑖=0

v′ [𝑖]
( 𝜇−1∏
𝑘=0

𝑥
Bits(𝑖 ) [𝑘 ]
𝑘

)
=

𝑛−1∑︁
𝑖=0

𝑙−1∑︁
𝑘=0

𝑦𝑘v𝑘 [𝑖]
( 𝜇−1∏
𝑘 ′=0

𝑥
Bits(𝑖 ) [𝑘 ′ ]
𝑘 ′

)
Let v𝑘×𝑛,𝑖 = Bits(v𝑘 [𝑖]), for all 𝑘 ∈ [𝑙] and 𝑖 ∈ [𝑛]. If all vectors

v𝑘 are in range [2𝑚], then:

v𝑘 [𝑖] =
𝑚−1∑︁
𝑗=0

2
𝑗v𝑘×𝑛,𝑖 [ 𝑗]

Therefore, we can rewrite 𝑣 ′ as

𝑣 ′ =
𝑙−1∑︁
𝑘=0

𝑛−1∑︁
𝑖=0

𝑚−1∑︁
𝑗=0

(( 𝜇−1∏
𝑘 ′=0

𝑥
Bits(𝑖 ) [𝑘 ′ ]
𝑘 ′

)
𝑦𝑘2𝑗

)
v𝑘×𝑛,𝑖 [ 𝑗]

For convenience, let 𝑓𝑖 =
∏𝜇−1

𝑘 ′=0
𝑥
Bits(𝑖 ) [𝑘 ′ ]
𝑘 ′

and f = (𝑓0, ..., 𝑓𝑛−1).
By simple substitution, we thus have

𝑣 ′ =
𝑙−1∑︁
𝑘=0

𝑛−1∑︁
𝑖=0

𝑚−1∑︁
𝑗=0

(𝑓𝑖𝑦𝑘2𝑗 )v𝑘×𝑛,𝑖 [ 𝑗]

It is easy to show that 𝑉 =
∏𝑙−1

𝑘=0
𝑉
𝑦𝑘

𝑘
is a commitment to v′.

To produce the aggregated range proof, we first compute 𝑦 =

ℎ(𝑉0, ...,𝑉𝑙−1) and𝑉 =
∏𝑙−1

𝑘=0
𝑉
𝑦𝑘

𝑘
. We define v̂ as the concatenation

of vectors v𝑘×𝑛,𝑖 , 𝑘 ∈ [𝑙] and 𝑖 ∈ [𝑛] and random vector w. That is:

v̂ = (v0×𝑛,0 ∥ v0×𝑛,1 ∥ ... ∥ v(𝑙−1)×𝑛,𝑚−1 ∥ w)

Let ŵ be the complement of v̂[: 𝑙𝑛𝑚]:

ŵ = 1𝑙𝑛𝑚 − v̂[: 𝑙𝑛𝑚] .

We execute the remainder of RP as previously described with the

following changes. Vector d = (𝑑0×𝑛,0, ..., 𝑑 (𝑙−1)×𝑛,𝑚−1 ∥ 𝑥f) is
of length 𝑙𝑛𝑚 + 𝑛 where for all 𝑘 ∈ [𝑙], 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚],
𝑑𝑘×𝑛+𝑖, 𝑗 = 𝑦𝑘 f [𝑖]2𝑗 . Moreover, vectors v̂ and ŵ are of lengths

𝑙𝑛𝑚 + 𝑛 and 𝑙𝑛𝑚, respectively.

The verification of the range proof proceeds similarly. We first

compute𝑦 = ℎ(𝑉0, ...,𝑉𝑙−1), and commitment𝑉 . We compute 𝑥 and

𝑈 , and runVRdx. If the verification of Rdx fails, then we output 0.

Else, we compute vectors f and d as described previously. Finally,

we execute the remainder ofVRP which completes the verification

(lines 59 − 69, in Figure 7). It is easy to see that this aggregation

reduces the size of the range proofs for vectors v0, ..., v𝑙−1 from
𝑂 (𝑙 log(𝑛𝑚)) to 𝑂 (log(𝑙𝑛𝑚)).

Theorem 7.3. The above argument is an aggregated range proof
over vector commitments in the ROM under the discrete logarithm
assumption.

8 EVALUATION
In order to demonstrate the practicality of our scheme, we imple-

mented our scheme and benchmarked its performance.

8.1 Benchmark specification
We implemented our scheme in ∼ 3,500 lines of Go [23] and our

implementation is publicly available on Github [24]. For efficiency

considerations, we instantiated the scheme with the BN-254 [25]

pairing friendly Elliptic Curve implementation of Gnark-crypto

[26]. All benchmarks were run on c5.2xlarge AWS virtual machines

with 8 CPUs, 16GB RAM and a gp2 SSD with 1,500 IOPs.

https://github.com/yacovm/PoL
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Figure 10: Performance (a) and size (b) evaluation of Liabilities proofs, and speedup from parallelizing range proofs (c)
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Figure 11: Evaluation (a) of total liabilities proofs, and performance breakdown of individual liabilities proofs (b), (c)

8.1.1 What is measured. Our strategy revolves around an abstrac-

tion of a "Liabilities Set" which is an instantiation of the scheme

as defined in Definition 1. We implement the operations ProveTot,
VerifyTot, Prove and Verify described in Section 5 and measure their

execution time and the size of the proofs they produce for maxi-

mum liability𝑚𝑎𝑥 = 2
63
. We also provide a breakdown of which

operations dominate the runtime and which are negligible. For the

inner product arguments, we implement the technique from Bullet-

proofs without the optimization in [12, Section 3.1] (IPA verification

through multi-exponentiation) which we consider as future work.

For the vector commitment scheme, we implement [11] as-is.

8.1.2 Verkle tree topology. At the heart of our Liabilities Set resides
a sparse Verkle tree as depicted in Figure 1. As evident from Figure 3,

the proofs associated to each vertex are made with respect to the

values it commits to, for which there exist descendant vertices.

Since our scheme makes heavy use of the inner product argument

[12], we optimize the topology of the Verkle tree by making the

degree (or fan-out) of each vertex be a power of two minus 1 (e.g

2
3 − 1 or 24 − 1). Therefore, when constructing the vector an inner

product argument works on, it becomes a power of two because

the last element in the vector is the sum of the previous elements.

8.2 Benchmark methodology
The public parameters of our scheme are derived from parameters

influencing the topology of the Verkle tree, namely the arity (fan-

out of each vertex). We investigate how changing the parameter

selection of the Verkle tree influences performance and proof size.

Specifically, we explore two dimensions: (i) whether the Verkle tree

has a limited capacity or an unlimited one; and (ii) the fan-out of

each vertex in the tree. To accommodate a potentially large number

of liabilities, we construct a sparse Verkle tree (hereafter SVT) with

an ID space of all 256 bit strings. In conjunction, we construct a

"dense" (non-sparse) Verkle tree (hereafter DVT) that can accom-

modate all 9 digit numbers (spans all Social Security Numbers (SSN)

[27] of the USA). Note that although the aforementioned SSN tree

is dense and not sparse, it is still history independent, as the path

from the root to the leaf is deterministically derived from the SSN

that is inserted. We then experiment both options with varying

numbers of descendants (fan-out).

8.2.1 Experiment layout. Each pair of parameter selection (dense/

sparse and fan-out) defines an experiment. Each experiment is

a two-phased process in which we first instantiate a Liabilities

Set and then populate it with liabilities corresponding to random

IDs. The public parameter generation and size is then measured

amortized across 10 iterations. In our experiments we found that

the number of liabilities we use to populate the Liabilities Set does

not influence the measurements of the proof generation, but only

prolongs the time to populate the Liabilities Set. In the second

phase, we insert liabilities for 10 random IDs and measure the

time it takes to generate and verify PoLs. The measurements are

amortized across all 10 random IDs.

8.2.2 Evaluated criteria. In all figures but 11a we evaluate proofs

for a liability of a single client (Prove and Verify). In Figure 11a
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we evaluate for ProveTot and VerifyTot. In Figure 10a we show

the overall time to produce a proof and verify it in both dense and

sparse Verkle tree topologies, as well as the time it takes to create the

public parameters. In Figure 10b, we measure the sizes of the public

parameters (PPs) in both sparse and dense topologies, and the sizes

of the proofs. Additionally, we repeat each experiment twice: once

where range proof generation and verification is parallelized, and

once where it is serial. We then measure the speedup facilitated by

parallelizing the range proof generation and verification as can be

seen in Figure 10c. In Figures 11b and 11c we show the time in proof

generation and verification that is spent on the Sum Argument (SA)

and Opening Equality Argument (OEA) and compare them against

the total time. We see here that the dominating factor of generating

or verifying a proof is the range proof.

8.3 Evaluation insights
We draw the following conclusions from the evaluations: (i) In

both dense and sparse Verkle trees, fan-out is inversly correlated

to the proof size. Indeed, as depicted in Table 1, our proof size is

linear in the depth of the tree, which explains this relation. (ii)

Accomodating an unlimited number of liabilities (via a sparse tree)

carries a size overhead in the proof, but not in the public parameters,

which can be explained because the public parameters depend only

on the fan-out but not on the depth of the proofs generated. (iii)

The dominating factor in the performance of our scheme is the

range proof. Fortunately, the range proof is trivially parallelizable

both in proof generation and verification and doing so yields a

significant speedup. (vi) The speedup in the dense tree that is gained

by parallelising the range proofs diminishes as the fan-out increases

and the tree becomes flatter, thus reducing the number of range

proofs that can be parallelised. (v)When verifying the total liabilities

(Figure 11a) the runtime is constant.

8.3.1 Comparison with DAPOL+. We compare our scheme with

the implementation of DAPOL+ [9] available online [28]. Both are

evaluated on AWS virtual machines with the specification from

Section 8.1. The DAPOL+ authors investigated the performance

of proof generation and verification time on Sparse Merkle Trees

(SMT) of varying height (16, 24, 32).

An SMT of height ℎ is equivalent to an SSVT with a universe size

of 2
ℎ
. We thus show the performance of our scheme with different

fanouts for each corresponding SMT height selection of DAPOL+

in Figure 12. We show comparisons of the proof generation time

in Figure 12a and the proof verification time in Figure 12b. Lastly,

we compare the proof size in both schemes for each corresponding

SMT height selection of DAPOL+ in Figure 12c. In both schemes,

the range proofs were not batched. Our evaluation shows that as

the fan-out of our SSVT increases, the proofs generated by our

scheme become smaller than those of DAPOL+.

9 CONCLUSION
We present the first fully-private decentralized PoL scheme with

short proofs that leaks only the size of the user universe. Full-

privacy of our scheme is achieved through the use of sparse sum-

mation Verkle trees together with tailor-made zero-knowledge ar-
guments that enable users to verify the inclusion of their liabilities

without compromising their privacy or the privacy of the prover.
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A PROOFS
A.1 Proof of Theorem 6.1
In this section, we prove the security of the opening equality argu-

ment OEA = (GOEA,POEA,VOEA) depicted in Figure 5.

Proof. Completeness. Completeness follows directly from the

completeness of the aggregation of Pointproofs commitments.

Zero-knowledge.We prove zero-knowledge by describing a simu-

lator, which thanks to the programmability of random oracle ℎ and

knowledge of the trapdoor 𝛼 of the Pointproofs commitments, is

able to produce a proof that is indistinguishable from the output of

an honest prover POEA.
The simulator proceeds as follows.

(𝑐, 𝑥)←$ Z𝑝 × Z𝑝
(𝑉 ,𝑊 )←$ G × G.

Then, it sets the hash ℎ(𝑉 ,𝑊 ,𝑉 ,𝑊 ) to 𝑥 and computes Ω using

Equation 1 and trapdoor 𝛼 . Recall that a valid proof (𝑐,𝑊 ,𝑊 ,Ω)
satisfies

𝑒 (Ω,𝐺)𝑒 (𝐹0, 𝐹𝑛)𝑐 (𝑡0+𝑡1 ) = 𝑒 ((𝑉𝑉 𝑥 )𝑡0 , 𝐹𝑛−𝑖 )𝑒 ((𝑊𝑊 𝑥 )𝑡1 , 𝐹𝑛− 𝑗 )

By isolating Ω to the left, we obtain:

𝑒 (Ω,𝐺) =
𝑒 ((𝑉𝑉 𝑥 )𝑡0 , 𝐹𝑛−𝑖 )𝑒 ((𝑊𝑊 𝑥 )𝑡1 , 𝐹𝑛− 𝑗 )

𝑒 (𝐹0, 𝐹𝑛)𝑐 (𝑡0+𝑡1 )

=
𝑒 ((𝑉𝑉 𝑥 )𝑡0 ,𝐺𝛼𝑛−𝑖+1 )𝑒 ((𝑊𝑊 𝑥 )𝑡1 ,𝐺𝛼𝑛− 𝑗+1 )

𝑒 (𝐺𝛼 ,𝐺𝛼𝑛+1 )𝑐 (𝑡0+𝑡1 )

=
𝑒 ((𝑉𝑉 𝑥 )𝑡0𝛼𝑛−𝑖+1

,𝐺)𝑒 ((𝑊𝑊 𝑥 )𝑡1𝛼𝑛− 𝑗+1
,𝐺)

𝑒 (𝐺𝛼𝑛+2𝑐 (𝑡0+𝑡1 ) ,𝐺)
and setting

Ω ← (𝑉𝑉 𝑥 )𝑡0𝛼
𝑛−𝑖+1
(𝑊𝑊 𝑥 )𝑡1𝛼

𝑛− 𝑗+1
𝐺−𝛼

𝑛+2𝑐 (𝑡0+𝑡1 ) .

Finally, the simulator outputs (𝑐,𝑉 ,𝑊 ,Ω). It is easy to see that

(𝑐,𝑉 ,𝑊 ,Ω) will be accepted byVOEA.

Since the first three elements are drawn and Ω is uniquely deter-

mined using Equation 1, the output of the simulator is statistically

indistinguishable from the output of POEA.
Finally, we recall that Ω is computed as a function of hiding

Pointproofs commitments 𝑉 and𝑊 , and random elements 𝑐,𝑉 and

𝑊 . As a result, we conclude that the simulator is able to successfully

simulate the output of POEA without access to its witness.

Knowledge-soundness. Note that if (𝑐,𝑉 ,𝑊 ,Ω) is accepted by

VOEA, then the soundness of the aggregation of Pointproofs entails

that 𝑐 opens 𝑉𝑉 𝑥
and𝑊𝑊 𝑥

at indices 𝑖 and 𝑗 , respectively.

By the homomorphism and the binding property of Pointproofs,

we have that 𝑐 = 𝑤 + 𝑥�̂� = 𝑣 + 𝑥𝑣 , which we can rewrite as

0 = (𝑤 − 𝑣) + (�̂� − 𝑣)𝑥

Since 𝑥 = ℎ(𝑉 ,𝑊 ,𝑉 ,𝑊 ), the Shwartz-Zippel lemma allows us to

deduce that𝑤 = 𝑣 and �̂� = 𝑣 with all but probability 1/𝑝 . In other

words, 𝑣 = 𝑤 and �̂� = 𝑣 .

Now we describe how an extractor can compute witness 𝑣 . The

extractor first runs POEA with ℎ(𝑉 ,𝑊 ,𝑉 ,𝑊 ) being set to 𝑥 to

get a first accepting proof (𝑐,𝑉 ,𝑊 ,Ω). It then rewinds POEA at

line 5 and sets ℎ(𝑉 ,𝑊 ,𝑉 ,𝑊 ) to 𝑥 ′, in order to get a second proof

(𝑐′,𝑉 ,𝑊 ,Ω′).
It then solves the system of linear equations composed of 𝑐 =

𝑣 + 𝑥𝑣 and 𝑐′ = 𝑣 + 𝑥 ′𝑣 , which yields a unique solution (𝑣, 𝑣), where
𝑣 opens 𝑉 and𝑊 at indices 𝑖 and 𝑗 respectively. □
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A.2 Proof of Theorem 6.2
In the following, we prove the security of the sum argument SA =

(GSA,PSA,VSA) depicted in Figure 6.

Proof. Completeness. Let b be the𝑛 element vector (1, ..., 1,−1).
Completeness is derived from the fact that for any vector v satisfy-

ing

∑𝑛−2
𝑖=0 v[𝑖] = v[𝑛 − 1], equality (v + 𝑥w) · b = 𝑥w · b holds for

any pair (𝑥,w) ∈ Z𝑝 × Z𝑛𝑝 .
Zero-knowledge. Next, we describe a simulator, which thanks to

the programmability of random oracle ℎ, is able to produce a proof

that is indistinguishable from the output of an honest prover PSA.
The simulator proceeds as follows:

a←$ Z𝑛𝑝 ; 𝑐 = a · b ; 𝑃 = GaHb

(𝑥, 𝜌)←$ Z𝑝

If 𝑥 ≠ 0, then the simulator computes𝑊 =

(
Ga

𝐹 𝜌𝑉

)
1/𝑥

. If not, the

simulator aborts. Note that the probability that the simulator aborts

is 1/𝑝 , which is negligible.

The simulator then sets the hash ℎ(𝑐,𝑉 ,𝑊 ) to value 𝑥 , and runs

PIPA with instance (𝑃, 𝑐𝑥) and the simulated witness (a, b) to obtain
the proof Π. Finally, it outputs (Π,𝑊 , 𝑐, 𝜌). It is easy to see that this
tuple will be accepted byVSA.

Recall that 𝜌 is selected uniformly at random and that 𝑐 , Π and𝑊

are determined by the verification equations of the sum argument.

Since 𝑐 = a · b for a randomly selected, it has the same distribution

as a 𝑐 produced by PSA. Moreover,𝑊 =

(
Ga

𝐹 𝜌𝑉

)
1/𝑥

for a and 𝜌

uniformly distributed. Therefore,𝑊 is also uniformly distributed.

Finally, Π is the output of PIPA on input vectors a and b.
Therefore, (Π,𝑊 , 𝑐, 𝜌) is statistically indistinguishable from a

proof produced by PSA.
Furthermore, proof Π output by PIPA and𝑊 are computed with-

out access to vector v or randomness 𝑟 committed in 𝑉 : Π is pro-

duced on input of a simulated witness a, which is selected indepen-

dently from v and𝑊 is computed as a function of public information

𝑉 and random elements 𝜌 and 𝑃 . Accordingly, we conclude that the

simulator is able to successfully simulate the output of PSA without

access to its witness.

Knowledge-soundness. We now show how to construct an ex-

tractor which, with access to PSA, extracts witness (v, 𝑟 ) such that

v[𝑛 − 1] = ∑𝑛−2
𝑖=0 v[𝑖] and 𝑉 = 𝐹𝑟Gv

.

The extractor runs PSA, sets ℎ(𝑐,𝑉 ,𝑊 ) to random value 𝑥 and

gets a first accepting proof (Π,𝑊 , 𝑐, 𝜌). Then it leverages the ex-

tractability of the IPA to obtain the witness a such that a · b = 𝑐𝑥

and Ga = 𝐹𝜌𝑉𝑊 𝑥
.

The extractor then rewinds PSA at line 5, Figure 6, setsℎ(𝑐,𝑉 ,𝑊 )
to a second random value 𝑥 ′ ≠ 𝑥 , and gets a second accepting proof
(Π′,𝑊 , 𝑐, 𝜌′). Then it invokes the extractor of the IPA to obtain the

witness a′ such that a′ · b = 𝑐𝑥 ′ and Ga′ = 𝐹𝜌𝑉𝑊 𝑥 ′
.

Note that there exist (v, 𝑟 ) and (w, 𝑟 ′) such that 𝑉 = 𝐹𝑟Gv
and

𝑊 = 𝐹𝑟
′
Gw

.

Therefore, the binding property of Pedersen commitment ensures

that a = v + 𝑥w, 𝜌 = −𝑟 − 𝑥𝑟 ′, a′ = v + 𝑥 ′w and 𝜌′ = −𝑟 − 𝑥 ′𝑟 ′.
Accordingly, the extractor builds and solves a system of 2𝑛 linear

equations a[𝑖] = v[𝑖] + 𝑥w[𝑖] and a′ [𝑖] = v[𝑖] + 𝑥w[𝑖], for 𝑖 ∈ [𝑛],

with 2𝑛 variables v and w. This results in a unique solution (v,w).
It also solves the system of linear equations −𝜌 = 𝑟 + 𝑥𝑟 ′ and
−𝜌′ = 𝑟 + 𝑥 ′𝑟 ′. This yields pair (𝑟, 𝑟 ′).

We now show that vector (v, 𝑟 ) must be a valid witness for the

relation 𝑉 = 𝐹𝑟Gv
and

∑𝑛−2
𝑖=0 v[𝑖] = v[𝑛 − 1].

By the soundness of the IPA protocol, 𝑐𝑥 = a · b. Expanding this

equation gives us

𝑐𝑥 = a · b = (v + 𝑥w) · b
𝑐𝑥 = v · b + 𝑥w · b

and rearranging the bottom equation yields

0 = v · b + 𝑥 ((w · b) − 𝑐) .
Since 𝑥 is computed asℎ(𝑐,𝑉 ,𝑊 ), the Shwartz-Zippel lemma allows

us to conclude that v · b = 0 and (w · b) − 𝑐 = 0 with all but a

negligible probability 1/𝑝 . □

A.3 Proof of Theorem 6.3
Proof. Let v be a vector of 𝑛 elements in Z𝑝 and 𝜇 = log(𝑛).

Let Bits(𝑖) = (𝑏0, ..., , 𝑏𝜇−1) denote the bit representation of 𝑖 with

𝑏0 is the least significant bit.

Let v(𝜇−𝑡 ) ∈ Z2(𝜇−𝑡 )𝑝 denote the resulting vector at the end of the

𝑡 th iteration of PRdx. Our goal is to show that for all 𝑡 ∈ [1..𝜇], 𝑖 ∈
[2𝜇−𝑡 ]:

v(𝜇−𝑡 ) [𝑖] =
2
𝑡−1∑︁
𝑗=0

v[𝑖 + 𝑗2𝜇−𝑡 ]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( 𝑗2𝜇−𝑡 ) [𝑘 ]
𝑘

)
(11)

We proceed by induction on 𝑡 ∈ [1..𝜇]. Note that by construction:

v(𝜇−1) = v(𝜇 ) [: 2(𝜇−1) ] + 𝑥𝜇−1v(𝜇 ) [2(𝜇−1) :]
As a result ∀𝑖 ∈ [2𝜇−1]

v(𝜇−1) [𝑖] = v[𝑖] + v[𝑖 + 2(𝜇−1) ]𝑥𝜇−1

=

1∑︁
𝑗=0

v[𝑖 + 𝑗2(𝜇−1) ]
( 𝜇−1∏
𝑘=𝜇−1

𝑥
Bits( 𝑗2(𝜇−1) ) [𝑘 ]
𝑘

)
This implies that 11 holds for 𝑡 = 1.

Suppose that Equation 11 holds for 𝑡 . We now show that it must

also hold for 𝑡 + 1. Recall that the protocol defines

v(𝜇−𝑡−1) = v(𝜇−𝑡 ) [: 2𝜇−𝑡−1] + v(𝜇−𝑡 ) [2𝜇−𝑡−1 :]𝑥𝜇−𝑡−1 .

Expanding and applying the inductive hypothesis yields∀𝑖 ∈ [2𝜇−𝑡−1]:

v(𝜇−𝑡−1) [𝑖] = v(𝜇−𝑡 ) [𝑖] + v(𝜇−𝑡 ) [𝑖 + 2𝜇−𝑡−1]𝑥𝜇−𝑡−1

=

2
𝑡−1∑︁
𝑗=0

v[𝑖 + 𝑗2𝜇−𝑡 ]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( 𝑗2𝜇−𝑡 ) [𝑘 ]
𝑘

)
𝑥0𝜇−𝑡−1

+
2
𝑡−1∑︁
𝑗=0

v[(𝑖 + 2𝜇−𝑡−1) + 𝑗2𝜇−𝑡 ]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( 𝑗2𝜇−𝑡 ) [𝑘 ]
𝑘

)
𝑥1𝜇−𝑡−1

=

2
𝑡−1∑︁
𝑗=0

v[𝑖 + (2 𝑗)2𝜇−𝑡−1]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( (2𝑗 )2𝜇−𝑡−1 ) [𝑘 ]
𝑘

)
𝑥0𝜇−𝑡−1

+
2
𝑡−1∑︁
𝑗=0

v[(𝑖 + (2 𝑗 + 1)2𝜇−𝑡−1)]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( (2𝑗 )2𝜇−𝑡−1 ) [𝑘 ]
𝑘

)
𝑥1𝜇−𝑡−1
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Let 𝑗0 = 2 𝑗 and 𝑗1 = 2 𝑗 + 1 for 𝑗 ∈ [2𝑡 ], and let

𝐴𝑖 =

2
𝑡+1−2∑︁

𝑗0=0, 𝑗0 even

v[𝑖 + 𝑗02𝜇−𝑡−1]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( 𝑗02𝜇−𝑡−1 ) [𝑘 ]
𝑘

)
𝑥0𝜇−𝑡−1

𝐵𝑖 =

2
𝑡+1−1∑︁

𝑗1=0, 𝑗1 odd

v[(𝑖 + 𝑗12𝜇−𝑡−1)]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( ( 𝑗1−1)2𝜇−𝑡−1 ) [𝑘 ]
𝑘

)
𝑥1𝜇−𝑡−1

We can therefore write v(𝜇−𝑡−1) [𝑖] = 𝐴𝑖 + 𝐵𝑖
Nownote that for all odd 𝑗1 ∈ [2𝑡+1], ( 𝑗1−1)2𝜇−𝑡−1 and 𝑗12𝜇−𝑡−1

coincide in the 𝑡 most significant bits, that is, bits at indices in

[(𝜇 − 𝑡) ..(𝜇 − 1)]. More specifically, 𝑗12
𝜇−𝑡−1

and ( 𝑗1 − 1)2𝜇−𝑡−1 =
𝑗12

𝜇−𝑡−1 − 2𝜇−𝑡−1 have the same bit representation except for the

bit at position 𝜇 − 𝑡 − 1. Bits at indices in [𝜇 − 𝑡 − 1] are all zeros.
Thus, we have:

𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( ( 𝑗1−1)2𝜇−𝑡−1 ) [𝑘 ]
𝑘

=

𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( 𝑗12𝜇−𝑡−1 ) [𝑘 ]
𝑘

And we can write:

𝐵𝑖 =

2
𝑡+1−1∑︁

𝑗1=0, 𝑗1 odd

v[(𝑖 + 𝑗12𝜇−𝑡−1)]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( 𝑗12𝜇−𝑡−1 ) [𝑘 ]
𝑘

)
𝑥1𝜇−𝑡−1

Moreover, note that for all 𝑗 ∈ [2𝑡+1],Bits( 𝑗2𝜇−𝑡−1) [𝜇−𝑡−1] = 𝑗

mod 2. Let 𝑏 𝑗,𝜇−𝑡−1 denote Bits( 𝑗2𝜇−𝑡−1) [𝜇 − 𝑡 − 1].
Accordingly, for an even 𝑗0, 𝑏 𝑗0,𝜇−𝑡−1 = 0, whereas for 𝑗1 odd,

𝑏 𝑗1,𝜇−𝑡−1 = 1, and we can hence write:

𝐴𝑖 =

2
𝑡+1−2∑︁

𝑗0=0, 𝑗0 even

v[𝑖 + 𝑗02𝜇−𝑡−1]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( 𝑗02𝜇−𝑡−1 ) [𝑘 ]
𝑘

)
𝑥
𝑏 𝑗

0
,𝜇−𝑡−1

𝜇−𝑡−1

𝐵𝑖 =

2
𝑡+1−1∑︁

𝑗1=0, 𝑗1 odd

v[(𝑖 + 𝑗12𝜇−𝑡−1)]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( 𝑗12𝜇−𝑡−1 ) [𝑘 ]
𝑘

)
𝑥
𝑏 𝑗

1
,𝜇−𝑡−1

𝜇−𝑡−1

Recall that v[𝑖] = 𝐴𝑖 + 𝐵𝑖 . If we replace 𝑗0 and 𝑗1 by 𝑗 , then we get:

v[𝑖] =
2
𝑡+1−2∑︁

𝑗=0, 𝑗 even

v[𝑖 + 𝑗2𝜇−𝑡−1]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( 𝑗2𝜇−𝑡−1 ) [𝑘 ]
𝑘

)
𝑥
𝑏 𝑗,𝜇−𝑡−1
𝜇−𝑡−1

+
2
𝑡+1−1∑︁

𝑗=0, 𝑗 odd

v[𝑖 + 𝑗2𝜇−𝑡−1]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( 𝑗2𝜇−𝑡−1 ) [𝑘 ]
𝑘

)
𝑥
𝑏 𝑗,𝜇−𝑡−1
𝜇−𝑡−1

That is:

v[𝑖] =
2
𝑡+1−1∑︁
𝑗=0

v[𝑖 + 𝑗2𝜇−𝑡−1]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( 𝑗2𝜇−𝑡−1 ) [𝑘 ]
𝑘

)
𝑥
𝑏 𝑗,𝜇−𝑡−1
𝜇−𝑡−1

=

2
𝑡+1−1∑︁
𝑗=0

v[𝑖 + 𝑗2𝜇−𝑡−1]
( 𝜇−1∏
𝑘=𝜇−𝑡

𝑥
Bits( 𝑗2𝜇−𝑡−1 ) [𝑘 ]
𝑘

)
𝑥
Bits( 𝑗2𝜇−𝑡−1 ) [𝜇−𝑡−1]
𝜇−𝑡−1

=

2
𝑡+1−1∑︁
𝑗=0

v[𝑖 + 𝑗2𝜇−𝑡−1]
( 𝜇−1∏
𝑘=𝜇−𝑡−1

𝑥
Bits( 𝑗2𝜇−𝑡−1 ) [𝑘 ]
𝑘

)
Setting 𝑡 = 𝜇 in Equation 11 and letting 𝑛 = 2

𝜇 − 1 concludes the
proof. □

A.4 Proof of Theorem 6.4
In what follows, we prove the security of the range proof RP =

(GRP,PRP,VRP) depicted in Figure 7.

Proof. Completeness. Completeness is deduced from the fact

that all valid witnesses satisfy Equations 4 to 8.

Zero-knowledge. we describe a simulator, which by controlling

the random oracle ℎ, is able to produce a proof that is indistin-

guishable from the output of an honest prover PRP. The simulator

proceeds as follows:

u←$ Z𝑛𝑝 ; 𝑈 = Gu

(𝛾, 𝑥)←$ Z𝑝 × Z𝑝

If 𝑥 ≠ 0, the simulator computes𝑊 = 𝑈
𝐹𝛾𝑉

1/𝑥
and letsℎ(𝑉 ,𝑊 ,𝑄) =

𝑥 . Otherwise, the simulator aborts, however, the probability of abort

at this stage is 1/𝑝 .
The simulator then runs PRdx with the instance𝑈 , witness u and

generators G. This returns pair (Γ, x). Next, the simulator computes

vector d as depicted in 7, lines 52 − 58. The simulator then selects

the following elements uniformly at random

(a, b)←$ Z𝑛𝑚+𝑛𝑝 × Z𝑛𝑚+𝑛𝑝

(𝑦0, 𝑦1, 𝑧)←$ Z𝑝 × Z𝑝 × Z𝑝
(𝜌, 𝜏)←$ Z𝑝 × Z𝑝
(𝑄,𝐶1)←$ G

It then computes F′ as depicted in line 66, followed by

𝑐 = a · b

𝑃 = Ha · F′b

𝑐0 = (1𝑚𝑛+𝑛 · d[: 𝑛𝑚])𝑦3
1
+ (1𝑚𝑛 · y0 + 𝑢)𝑦21 + (1

𝑚𝑛 · y0)𝑦1

Furthermore, if 𝑧 ≠ 0, the simulator computes

𝑅 =

(
𝑃

𝐹𝜌𝑄H[: 𝑛𝑚]−y1F′𝑦
2

1
dF[: 𝑛𝑚]y1

)
1/𝑧

𝐶2 =

(
𝐺𝑐𝐻𝜏

𝐶𝑧
1
𝐺𝑐0

)
1/𝑧2

Otherwise, the simulator aborts. Note that the probability that the

simulator aborts at this stage is 1/𝑝 .
The simulator then lets 𝑦0 = ℎ(𝑈 ,𝑄, 𝑅, 0), 𝑦1 = ℎ(𝑈 ,𝑄, 𝑅, 1) and

𝑧 = ℎ(𝑈 ,𝑄, 𝑅,𝐶1,𝐶2), and runs PIPA with the instance (𝑃, 𝑐) and
the simulated witness (a, b). This yields an IPA’s proof Π.

It is easy to check that the proof (Γ,𝑊 ,𝛾,Π, 𝑐,𝑄, 𝑅,𝐶1,𝐶2, 𝜌, 𝜏)
output by the simulator will be accepted byVRP. In fact,VRdx will

accept on input Γ and 𝑈 = 𝑉𝑊 𝑥
, VIPA will accept on input Π,

𝑃 = HaF′b and 𝑐 ,VRP will not return 0 at line 65.

Now, recall that (𝛾, 𝜌, 𝜏,𝑄,𝐶1) are selected uniformly at random,

whereas (𝑊,𝑅,𝐶2) are determined by the verification equations

of the range proof. Note that𝑊 = 𝑈
𝐹𝛾𝑉

1/𝑥
for 𝑈 and 𝛾 selected

uniformly at random. Therefore,𝑊 is also distributed uniformly at

random. A similar argument can bemade for𝑅 and𝐶2. Finally, Γ and
(𝑐,Π) are the output of PRdx and PIPA respectively. It follows then
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that (Γ,𝑊 ,𝛾,Π, 𝑐,𝑄, 𝑅,𝐶1,𝐶2, 𝜌, 𝜏) is statistically indistinguishable

from a proof produced by PRP.
Furthermore, tuple (𝑐,Π, Γ) are computed without access to vec-

tor v or randomness 𝑟 committed in 𝑉 : 𝑐 and Π are produced on

input of a simulated witness (a, b), which is selected independently

from v; and Γ is computed on input of a random vector u also

selected independently from v. Accordingly, we conclude that the
simulator is able to successfully simulate the output of PRP without

access to its witness.

Knowledge-soundness. We now show how to construct an ex-

tractor whose access to PRP enables it to extract witness (v, 𝑟 ) such
that v[𝑖] ∈ [2𝑚],∀𝑖 ∈ [𝑛] and 𝑉 = 𝐹𝑟Gv

.

The extractor executes PRP. During the execution, the extractor

sets ℎ(𝑉 ,𝑊 ,𝑄) to random value 𝑥 , ℎ(𝑈 ,𝑄, 𝑅, 0) and ℎ(𝑈 ,𝑄, 𝑅, 1)
to random values 𝑦0 and 𝑦1, and ℎ(𝑈 ,𝑄, 𝑅,𝐶1,𝐶2) to random value

𝑧. The execution concludes by outputting a first accepting proof

(Γ,𝑊 ,𝛾,Π, 𝑐,𝑄, 𝑅,𝐶1,𝐶2, 𝜌, 𝜏). Then it leverages the extractability

of the IPA to obtain the witness (a, b) such that a ·b = 𝑐 and HaF′b =

𝐹𝜌𝑄𝑅𝑧H[: 𝑛𝑚]y1F′𝑦
2

1
dF[: 𝑛𝑚]y1 . Next, the extractor rewinds at line

33, sets ℎ(𝑈 ,𝑄, 𝑅,𝐶1,𝐶2) to another random value 𝑧′, and gets a

second accepting proof (Γ,𝑊 ,𝛾,Π, 𝑐,𝑄, 𝑅,𝐶1,𝐶2, 𝜌
′, 𝜏 ′). It leverages

again the extractability of the IPA to obtain the witness a′ such that

a′ · b′ = 𝑐′ and Ha′F′b
′
= 𝐹𝜌

′
𝑄𝑅𝑧

′
H[: 𝑛𝑚]y1F′𝑦

2

1
dF[: 𝑛𝑚]y1 .

Note that there exist tuples (v̂, ŵ, 𝜈) and (s, t, 𝜂) such that 𝑄 =

𝐹 𝜈Hv̂F[: 𝑛𝑚]ŵ and 𝑅 = 𝐹𝜂HsF[: 𝑛𝑚]t. Therefore, by the binding

property of Pedersen commitment, we have the following equalities:

a = v̂ + (y1 ∥ 0𝑛) + 𝑧s

b = 𝑦2
1
d + 𝑦1 (y0∥0𝑛) + ((ŵ ◦ y0)∥0𝑛) + 𝑧 (y0 ◦ t)∥0𝑛

𝜌 = −𝜈 − 𝑧𝜂
a′ = v̂ + (y1 ∥ 0𝑛) + 𝑧′s
b′ = 𝑦2

1
d + 𝑦1 (y0∥0𝑛) + ((ŵ ◦ y0)∥0𝑛) + 𝑧′ (y0 ◦ t)∥0𝑛

𝜌′ = −𝜈 − 𝑧′𝜂
From these equations, the extractor builds a system of 4𝑛𝑚 + 2𝑛 + 2
equations with 4𝑛𝑚 + 2𝑛 + 2 variables v̂, ŵ, s, t, 𝜈 and 𝜂, and solves

it to get v̂, ŵ and 𝜈 .

We now show that from v̂ we can get a witness that is valid.

By the soundness of the IPA protocol and the binding property of

Pedersen commitments , we have that

a · b = 𝑐0 + 𝑐1𝑧 + 𝑐2𝑧2

Since 𝑧 = ℎ(𝑈 ,𝑄, 𝑅,𝐶1,𝐶2), the Schwartz-Zippel lemma allows us

to infer

𝑐0 = (v̂ + (y1∥0𝑛)) · 𝑦21d + 𝑦1 (y0∥0𝑛) + ((ŵ ◦ y0)∥0𝑛);
We also have that

𝑐0 = 1𝑛𝑚 · d[: 𝑛𝑚]𝑦3
1
+ (1𝑛𝑚 · y0 + 𝑢)𝑦21 + 1𝑛𝑚 · y0𝑦1

Note that since 𝑦0 = ℎ(𝑈 ,𝑄, 𝑅, 0) and 𝑦1 = ℎ(𝑈 ,𝑄, 𝑅, 1), we can
use the Schwartz-Zippel lemma to conclude that the following

equalities hold with all but negligible probability 3/𝑝 .
𝑢 = v̂ · d
0 = v̂[: 𝑛𝑚] · (ŵ ◦ y0)

1𝑛𝑚 · y0 = (v̂[: 𝑛𝑚] + ŵ) · y0

Again given that 𝑦0 = ℎ(𝑈 ,𝑄, 𝑅, 0), the Schwartz-Zippel lemma

entails that v̂[: 𝑛𝑚] ◦ ŵ = 0𝑛𝑚 and v̂[: 𝑛𝑚] + ŵ = 1𝑛𝑚 with all but

probability (𝑛𝑚 − 1)/𝑝 . This proves that v̂[: 𝑛𝑚] is composed of

bits and ŵ is its complement.

Wewrite v̂ as the concatenation of𝑚+1 vectors (v̂0∥...∥v̂𝑚−1∥w),
each of length 𝑛.

Consequently, expanding out the equation v̂ · d = 𝑢 yields

𝑢 =

( 𝑛−1∑︁
𝑖=0

𝑚−1∑︁
𝑗=0

2
𝑗 v̂𝑖 [ 𝑗] 𝑓𝑖

)
+ 𝑥w · f

=

( 𝑛−1∑︁
𝑖=0

𝑚−1∑︁
𝑗=0

2
𝑗 v̂𝑖 [ 𝑗] 𝑓𝑖

)
+ 𝑥

𝑛−1∑︁
𝑖=0

w[𝑖] 𝑓𝑖

Let v denote𝑛−length vector defined by elements v[𝑖] = ∑𝑚−1
𝑗=0 2

𝑗 v̂𝑖 [ 𝑗]
for all 𝑖 ∈ [𝑛]. We can therefore write

𝑢 =

𝑛−1∑︁
𝑖=0

(v[𝑖] + 𝑥w[𝑖]) 𝑓𝑖

Let u be the vector committed in𝑈 . By construction:

𝑢 =

𝑛−1∑︁
𝑖

u[𝑖] 𝑓𝑖

Therefore

0 =

𝑛−1∑︁
𝑖

(v[𝑖] + 𝑥w[𝑖] − u[𝑖]) 𝑓𝑖

0 =

𝑛−1∑︁
𝑖

(v[𝑖] + 𝑥w[𝑖] − u[𝑖])
𝜇−1∏
𝑘=0

𝑥
Bits(𝑖 ) [𝑘 ]
𝑘

Recall that 𝑥𝑘 are random and only computed after v, w, u and 𝑥

are fixed. Therefore, the Schwartz-Zippel lemma allows us to deduce

that v[𝑖] + 𝑥w[𝑖] − u[𝑖] = 0 with all but negligible probability 1/𝑝 .
Recall that u denote the vector committed in 𝑈 = 𝐹𝛾𝑉𝑊 𝑥

.

The binding property of Pedersen commitments together with the

Schwartz-Zippel lemma ensure that v is the vector that verifies

𝑉 = 𝐹𝑟Gv
, for some random 𝑟 .

Finally, to extract 𝑟 , we rewind at line 9. □
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