
Full Database Reconstruction in Two Dimensions
Francesca Falzon

∗

University of Chicago

ffalzon@uchicago.edu

Evangelia Anna Markatou
∗

Brown University

markatou@brown.edu

Akshima

University of Chicago

akshima@uchicago.edu

David Cash

University of Chicago

davidcash@uchicago.edu

Adam Rivkin

University of Chicago

amrivkin@uchicago.edu

Jesse Stern

University of Chicago

jesseastern@uchicago.edu

Roberto Tamassia

Brown University

rt@cs.brown.edu

ABSTRACT
In the past few years, we have seen multiple attacks on one-dimen-

sional databases that support range queries. These attacks achieve

full database reconstruction by exploiting access pattern leakage

along with known query distribution or search pattern leakage. We

are the first to go beyond one dimension, exploring this threat in

two dimensions. We unveil an intrinsic limitation of reconstruc-

tion attacks by showing that there can be an exponential number

of distinct databases that produce equivalent leakage. Next, we

present a full database reconstruction attack. Our algorithm runs in

polynomial time and returns a poly-size encoding of all databases

consistent with the given leakage profile. We implement our algo-

rithm and observe real-world databases that admit a large number

of equivalent databases, which aligns with our theoretical results.

CCS CONCEPTS
• Security and privacy → Cryptanalysis and other attacks;
Database and storage security.

KEYWORDS
Encrypted Database; Database Reconstruction; Attack

ACM Reference Format:
Francesca Falzon, Evangelia Anna Markatou, Akshima, David Cash, Adam

Rivkin, Jesse Stern, and Roberto Tamassia. 2020. Full Database Recon-

struction in Two Dimensions. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’20), Novem-
ber 9–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3372297.3417275

1 INTRODUCTION
Encryption can mitigate the risk of a data breach, whether stored

in local infrastructure or at a cloud service. However, standard

encryption limits the ability of the server holding the ciphertexts to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00

https://doi.org/10.1145/3372297.3417275

Figure 1: Reconstruction of Malte Spitz’s [36] location data
from 08/31/2009. Original locations are drawn as blue points
and their reflections as yellow triangles. The points in each
highlighted box and stand-alone pair can independently flip
along the diagonal, producing 1024 equivalent databases.

search data unless the decryption key is available. Many solutions

have been suggested to enable server processing of encrypted data

on behalf of clients. In this work, we consider solutions that allow

the server to respond to range queries on an encrypted database

without decrypting the data. Order revealing encryption [1, 4, 5]

supports range queries, but various such schemes, including the

most-secure “ideal” constructions, have been shown vulnerable to

devastating leakage abuse attacks (e.g., [3, 13, 20, 31]) that recover
data in certain circumstances, a fact that underscores the need to

better understand the security of these schemes.

As an alternative to order revealing encryption, searchable en-
cryption involves building an encrypted index to look up range

queries (e.g., [10] and the survey by Fuller et al. [15]). These schemes

support a variety of query types, including subsets of SQL (e.g. [14,

21]). When a query is processed, the client learns the results of the

query and then learns some “leakage” about the data and the query.

This approach has been used both in data management research

(e.g., [33–35]) and industry (e.g., [9, 32]) and will likely continue

to be deployed despite leakage-based attacks because it still resists

other weaker attacks (e.g., a smash-and-grab data breach no longer

reveals an entire column of credit card information).

Several recent works [18, 19, 23–27] have presented attacks that

leverage a mild-looking form of leakage on range queries and 𝑘-NN

queries. The attacks assume knowledge of the access pattern of the

query, meaning the identifiers of the records in the response of the

∗
FF and EAM are co-first authors who contributed equally, listed alphabetically.

The remaining authors are listed alphabetically. The Brown and Chicago teams con-

tributed equally to this work.

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

443

https://doi.org/10.1145/3372297.3417275
https://doi.org/10.1145/3372297.3417275

query. With enough queries and knowledge of their distribution,

these attacks can efficiently fully recover the plaintext data, up

to reflection (intuitively, the attack is not sure about the order of

the data, since increasing and decreasing sequences of points are

indistinguishable in their models). Attacks can also leverage another

type of mild-looking leakage, search pattern leakage. Using search

pattern leakage, the attacker can determine whether two identical

responses correspond to the same query. The combination of access

and search pattern leakage can achieve equivalent results without

knowledge of the query distributions.

1.1 Contributions
We perform the first exploration of reconstruction attacks on en-

crypted databases that support two-dimensional range queries. Con-
cretely, we consider settings that allow for conjunctive range queries

on two columns (e.g. a query 𝑞 selects all records with weight be-

tween𝑤0 and𝑤1 and height between ℎ0 and ℎ1). We consider this

problem because plausible efficient constructions can support such

queries while leaking strictly less information than systems that pre-

form one-dimensional range queries. Prior work in one-dimension

leaves the security of these systems open.

Our results assume a basic form of leakage where a persistent

passive adversary learns which (encrypted) records are returned

for each query. Our attack additionally requires either knowledge

of the query distribution or search pattern leakage. Our leakage

choice is conservative, and as we argue below, will apply to many

potential approaches towards supporting two-dimensional range

queries. It is also strong, in that (following prior work) we require

all possible queries to be issued in order to get a clean theoretical

understanding of possible attacks. In our setting we completely

characterize what is information-theoretically possible to recover

by the adversary, showing that in the two-dimensional setting it

can be complicated even to describe. We then develop an efficient

algorithm that succeeds in finding all databases consistent with the

observed leakage.

There are many possible ways to support encrypted two-dimen-

sional range queries. We selected a leakage profile that reflects a

common-denominator leakage that appears difficult to efficiently

avoid and is also technically interesting to attack. To begin un-

derstanding our setting, consider an index-based approach that

independently supports range queries on individual columns, and

simply translates a two-dimensional query into the intersection of

one-dimensional queries. Such a system, on the query 𝑞 from the

previous paragraph, will leak which columns have the requested

weight and which columns have the requested height. Prior one-

dimensional attacks (e.g. [18, 23]) can thus be applied to each di-

mension, recovering the full database.

A few approaches can leak strictly less than this one and render

the one-dimensional attacks inapplicable. A conceptually simple

system could, roughly speaking, precompute a joint index for all

possible two-dimensional 𝑞. Once this index is encrypted (using

an encrypted multimap [6, 8, 10], say), only the records matching

both dimensions will be retrieved when processing a given 𝑞 (in

contrast to the naive solution, where records matching the weight

range but not the height range would be accessed unnecessarily).

Since the dimensions interfere with each other to produce leakage,

prior attacks do not apply.

Another approach which could produce similar leakage is to

use an oblivious primitive like ORAM to obtain the identifiers of

records matching the query, and then access the actual records in

a standard data store. Such an approach, which has been used for

encrypted keyword searches (e.g., [16]), and dynamic constructions

like [7, 11], is desirable when the actual records are large compared

to the indexing information, as it would reduce the size of the

ORAM. This approach hides the search pattern and the leakage on

individual columns, but still reveals the access pattern of records

matching the query. Thus, this method is vulnerable to our attack

when the query distribution is known.

Maple is a system for multi-dimensional range search over en-

crypted cloud data [37]. Their approach focuses on not leaking

single-dimension information. To achieve this, the system leaks, in

addition to access and search pattern leakage, the path pattern of the

search tree (which nodes were accessed on the multi-dimensional

range search tree) and the values of each query (which ranges are

being queried). More recently, Kamara et al. [21, 22] show how to

perform conjunctive SQL queries with a reduced leakage profile,

but only for a single value and not ranges.

In contrast to the one-dimensional case where complete recovery

up to reflection is possible, we present an information-theoretic

limit to the power of reconstruction attacks in two dimensions.

Namely, we show that there exist exponentially-large families of

different databases that have indistinguishable access and search

pattern leakage. Also, for a database 𝐷 , we fully characterize the set

of databases with leakage identical to that of 𝐷 in terms of combi-

natorial and geometric properties of 𝐷 as well as number-theoretic

considerations involving the domain of points of 𝐷 , including the

number of integral solutions to a certain Diophantine equation. We

tame this complexity by providing a characterization and succinct

encoding of this set of indistinguishable databases.

Based on this characterization, we exhibit a poly-time attack

that recovers the set of indistinguishable databases returning a

poly-space encoding of it. For a database with 𝑅 records over a rect-

angular domain with 𝑁0×𝑁1 points, where 𝑁 = 𝑁0 ·𝑁1, our attack

takes time 𝑂 ((𝑁0 + 𝑁1) (𝑅𝑁 2 + 𝑅 log𝑅)). Our attack works for an

arbitrary database, with no assumptions on the configuration of the

points. In particular, we support both dense and sparse databases,

allowing zero, one, or multiple records per domain point.

We have implemented our attack and evaluated it on several

datasets of real-world health and location data. We illustrate in

Figure 1 our reconstruction of a real-world location dataset by our

attack, which recovers a family of equivalent databases obtained

by independently flipping along the diagonal certain highlighted

subsets of points. Finally, we developed another attack that, assum-

ing some prior auxiliary knowledge, picks the “real” database out

from amongst the indistinguishable set, and showed that it typically

succeeds on real-world data.

We summarize our main contributions as follows:

(1) We characterize the families of 2D databases with the same

leakage profile and show they may contain an exponential

number of databases (Section 4, Theorems 4.3 and 4.4).

(2) We develop an efficient poly-time full database reconstruc-

tion attack that encodes the potentially exponential databases

in poly-space (Section 5, Algorithm 3 and Theorem 5.5).

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

444

Table 1: Comparison of our work with related FDR attacks.

Queries Assumptions Leakage

1D 1D 2D Query Data Access Search

range 𝑘-NN range distrib. distrib. pattern pattern

Kellaris+ [23] ✓ Uniform Any ✓ ✓
Lacharité+ [26] ✓ Agnostic Dense ✓

Kornaropoulos+ [24] ✓ Uniform Any ✓
Grubbs+ [18] ✓ Uniform Any ✓
Grubbs+ [18] ✓ Uniform Minor info ✓

Markatou+ [27] ✓ Agnostic Any ✓ ✓
Kornaropoulos+ [25] ✓ ✓ Agnostic Any ✓ ✓

This Work ✓ Agnostic Any ✓ ✓
This Work ✓ Known Any ✓

(3) We implement the attack and evaluate it on real-world

location and health data (Section 6).

(4) Given access to training data, we show how to reduce the
size of the solution set (Section 7).

This paper is the product of merging two independent lines of

work, [2] and [29].

1.2 Prior and related work
Kellaris et al. [23] show that for a one-dimensional database over

domain [1, 𝑁], one can determine the exact record values up to

reflection with𝑂 (𝑁 4
log𝑁) uniformly random queries. Also, recon-

struction can be done with only𝑂 (𝑁 2
log𝑁) queries if the database

is dense. Informally, a dense database is one in which each domain

value is associated with at least one record. In [26], Lacharitè et

al. improve on the dense database attack and present an algorithm

that succeeds in reconstructing dense databases with 𝑂 (𝑁 log𝑁)
queries. For large 𝑁 , these query complexities can quickly become

impractical, so they additionally presented an 𝜖-approximate data-
base reconstruction (𝜖-ADR) attack that recovers all plaintext values

up to some additive 𝜖𝑁 error with 𝑂 (𝑁 log 𝜖−1) queries.
The sacrificial 𝜖-ADR approximation attack by Grubbs et al. [18]

is scale free, i.e., its success depends only on the value of 𝜖 (as

opposed to both 𝜖 and 𝑁). The first attack issues 𝑂 (𝜖−4 log 𝜖−1)
queries and the second attack succeeds with𝑂 (𝜖−2 log 𝜖−1) queries
under the assumption that there exists some record in the database

whose value is in the range [0.2𝑁, 0.3𝑁] (or its reflection). Both
attacks rely on uniform query distribution. The authors also prove

that database reconstruction from known queries can be reduced

to PAC learning.

Reconstruction attacks from 𝑘-NN queries are presented by Ko-

rnaropoulos et al. [24]. For cases when exact reconstruction is

impossible, they characterize the space of valid reconstructions

and give approximation reconstruction methods. In other work,

Kornaropoulos et al. [25] combine access pattern leakage with

search-pattern leakage and apply statistical learning methods to re-

construct databases with unknown query distributions from range

and 𝑘-NN queries. Table 1 compares our attacks with selected re-

lated work.

There has also been some work on mitigation techniques for

leakage-abuse attacks [12, 17, 28, 30].

2 PRELIMINARIES

Domains and databases. For an integer 𝑁 let [𝑁] = {1, 2, . . . , 𝑁 }.
For the rest of the paper, we fix positive integers 𝑁0, 𝑁1 and let

D = [𝑁0] × [𝑁1]. When 𝑁0 = 𝑁1 we say that D is square. We

call main diagonal of D the set of points that lie on line segment

from (0, 0) to (𝑁0 + 1, 𝑁1 + 1). For a point𝑤 ∈ D, we write𝑤0 for

its first coordinate (horizontal) and 𝑤1 for its second coordinate

(vertical), so𝑤 = (𝑤0,𝑤1). We also recall the geometric concept of

dominance between points: point 𝑤 ∈ D dominates point 𝑥 ∈ D
if 𝑥0 ≤ 𝑤0 and 𝑥1 ≤ 𝑤1. We denote this as 𝑥 ⪯ 𝑤 . Similarly, point

𝑤 ∈ D anti-dominates point 𝑥 ∈ D if 𝑤0 ≤ 𝑥0 and 𝑥1 ≤ 𝑤1, and

we denote this as 𝑥 ⪯𝑎 𝑤 .

We define a 2-dimensional database 𝐷 over domain D as an

element of D𝑅
for some integer 𝑅 ≥ 1, i.e., an 𝑅-tuple of points

in D. We refer to the entries of 𝐷 as records. We call the identifier
(or ID) of a record its index in the tuple (an integer 𝑗 ∈ [𝑅]). Also,
the domain value associated with ID 𝑗 is denoted 𝐷 [𝑗]. Note that
the same value in D may be associated with multiple database

records. In the rest of this paper, for simplicity, whenever it is clear

from the context, we may refer to records of a database as points.

Range qeries and responses. A range query returns the iden-

tifiers of the records whose points are in a given range. Formally,

a range query is a pair 𝑞 = (𝑐, 𝑑) ∈ D2
such that 𝑐 ⪯ 𝑑 . We define

the response of 𝑞 = (𝑐, 𝑑) to be the set of identifiers of records in 𝐷

whose points lie in the rectangle “between” 𝑐 and 𝑑 . Formally,

Resp(𝐷,𝑞) = { 𝑗 ∈ [𝑅] : 𝑐 ⪯ 𝐷 [𝑗] ⪯ 𝑑}. (1)

We define the response multiset of a database 𝐷 , denoted RM(𝐷),
to be the multiset of all access patterns of 𝐷 . Formally,

RM(𝐷) = {{Resp(𝐷,𝑞) : 𝑞 = (𝑐, 𝑑) ∈ D2, 𝑐 ⪯ 𝑑}}. (2)

This is amultiset because distinct queries𝑞, 𝑞′may haveResp(𝐷,𝑞) =
Resp(𝐷,𝑞′), i.e., return the same records. We also define the cor-

responding set RS(𝐷) = 𝑠𝑒𝑡 (RM(𝐷)), by removing any duplicate

entries from RM(𝐷).
Computing the response multiset. Our algorithms assume the

response multiset RM(𝐷) as input. This allows us to isolate the

combinatorial and geometric structure of the problem. We now

show how an adversary can calculate RM(𝐷) with access pattern

leakage plus (i) known query distribution, (ii) search pattern leakage

and known query distribution, or (iii) search pattern leakage and

known database size. These are all standard in previous work.

In case (i), the adversary computes each unique response 𝑠 of

RM(𝐷) and its multiplicity, which is given by the probability of 𝑠

being returned by a query. For example, given a uniform distribution

of queries, the multiplicities can be computed with high probability

using a standard Chernoff bound argument after roughly 𝑂 (𝑁 4)
queries. Similar techniques can be used for other distributions.

In cases (ii) and (iii), the adversary can derive RM(𝐷) after ob-
serving a response to every query at least once. To know when

this has occurred, the adversary waits for a sufficient number of

queries that depends on the query distribution (case (ii)) or until

all distinct queries have been seen, their count based on the size of

the database (case (iii)). Notably, in cases (ii) and (iii), if the queries

are uniform,𝑂 (𝑁 2
log𝑁) queries are sufficient to compute RM(𝐷)

with high probability, by the coupon collector argument.

Leakage Eqivalent databases.We say that databases 𝐷,𝐷 ′ ∈
D𝑅

with the same record identifiers are equivalent if RM(𝐷) =

RM(𝐷 ′), meaning that the response multisets of the databases are

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

445

exactly the same. (This implies that they have the same number of

records.) We denote the set of databases equivalent to 𝐷 as

E(𝐷) = {𝐷 ′ ∈ D𝑅
: 𝐷 and 𝐷 ′

are equivalent}. (3)

Full database reconstruction. We define the problem of Full
Database Reconstruction (FDR) as follows: Given RM(𝐷) for some

database 𝐷 , compute E(𝐷).
Computing E(𝐷) is the best an adversary can do without prior

information on 𝐷 or the queries. We revisit the setting later and

show that, with training data, an adversary can often recover 𝐷

after computing E(𝐷) by looking for the most typical member.

3 TECHNICAL TOOLS AND OVERVIEW
We introduce the main technical ingredients in our algorithm, and

then provide an overview of how they are combined. At the end of

this section we apply these tools to classify the structure of E(𝐷)
for any database 𝐷 . We will then apply our classification in the

analysis of our main algorithm.

Reflection. Symmetries will play a central role in understanding

E(𝐷), the most important of which for us is reflection. We define

the reflection of a point𝑤 = (𝑤0,𝑤1) of domain D = [𝑁0] × [𝑁1]
to be the point𝑤 ′ = (𝑤 ′

0
,𝑤 ′

1
) such that (see Figure 2)

𝑤 ′
0
= 𝑤1 ·

𝑁0 + 1

𝑁1 + 1

; 𝑤 ′
1
= 𝑤0 ·

𝑁1 + 1

𝑁0 + 1

. (4)

We refer to the reflection of a point using function𝑤 ′ = 𝜎 (𝑤). The
reflection of𝑤 , 𝜎 (𝑤), can be obtained geometrically by considering

the rectangle with horizontal and vertical sides that has one corner

at point𝑤 and two other corners on the main diagonal of D. The

reflection,𝑤 ′
of𝑤 is the remaining corner of this rectangle. Note

that the reflection𝑤 ′
of𝑤 may or may not be in D. The following

lemma characterizes the points of D whose reflection is also in D.

150

10

u

u′

w

w′

v

v′

105

5

Figure 2: Points 𝑢, 𝑣 and 𝑤 of domain D = [14] × [9] (thick
black rectangle) and their reflections 𝑢 ′, 𝑣 ′ and 𝑤 ′. We have
that 𝑢 ′ ∈ D but 𝑣 ′ ∉ D and𝑤 ′ ∉ D. By Lemma 3.1, the points
of D whose reflection is in D have coordinates of the type
(3𝑖, 2 𝑗), i.e., are at the intersections of the dotted grid-lines.

Lemma 3.1. Let𝑤 = (𝑤0,𝑤1) be a point of domain D = [𝑁0] ×
[𝑁1] and let 𝛼0

𝛼1

be the reduction of fraction 𝑁0+1
𝑁1+1 to its lowest terms.

We have that the reflection of𝑤 is in domain D if and only if𝑤0 is a
multiple of 𝛼0 and𝑤1 is a multiple of 𝛼1.

Our definition of reflection refers to the main diagonal of the

domain. We can define a similar concept referring to the other

diagonal, i.e., the line segment from (𝑁0 + 1, 0) to (0, 𝑁1 + 1).

3.1 Query Densities
We will repeatedly use a strategy that generalizes the main observa-

tion of [23]. There, in trying to determine a point 𝑥 , they observed

150

10

w

105

5 w′

150

10

v

105

5

w′

w
v′

(a) (b)

Figure 3: Illustration of Equations 5 and 6 for points of
domain D = [14] × [9]. (a) The query density of point
𝑤 = (6, 2) is the product of the areas of the two rectangles,
i.e., 𝜌𝑤 = 6 · 2 · (15 − 6) · (10 − 2) = 12 · 72 = 864. Since the
reflection 𝑤 ′ = (3, 4) of 𝑤 is a point of D, by Lemma 3.2, we
have 𝜌𝑤′ = 𝜌𝑤 = 864. (b) The query density of pair 𝑣 = (6, 2)
and 𝑤 = (12, 4) is the product of the areas of the two purple
filled rectangles, i.e., 𝜌𝑣,𝑤 = 12 · 18 = 216. Since the reflec-
tions 𝑣 ′ = (3, 4) of 𝑣 and 𝑤 ′ = (6, 8) of 𝑤 are points of D, by
Lemma 3.3, we have 𝜌𝑣,𝑤 = 𝜌𝑣′,𝑤 = 𝜌𝑣,𝑤′ = 𝜌𝑣′,𝑤′ = 216.

that one can compute the proportion of RM(𝐷) in which 𝑥 appears.

Then they could proceed algebraically to limit the number of pos-

sible values for 𝑥 . In particular, in one dimension, this narrowed

𝑥 down to two values. The final step of their algorithm reduced

this to one possibility by fixing another point 𝑦 and recording how

often 𝑥 and 𝑦 appeared together, adding another constraint.

We now generalize the notion of query density to two dimen-

sions. For a domain D = [𝑁0] × [𝑁1], and 𝑥 ∈ D, define

𝜌𝑥 =
��{(𝑐, 𝑑) ∈ D2

: 𝑐 ⪯ 𝑥 ⪯ 𝑑}
��

and for a pair of points 𝑥,𝑦 ∈ D define

𝜌𝑥,𝑦 =
��{(𝑐, 𝑑) ∈ D2

: 𝑐 ⪯ 𝑥,𝑦 ⪯ 𝑑}
�� .

Thus, these are the number of queries that contain 𝑥 or 𝑥 and 𝑦

(respectively). The formula for the query density 𝜌𝑥 of a point

𝑥 = (𝑥0, 𝑥1) ∈ D = [𝑁0] × [𝑁1] is as follows (see Figures 3 and 5).

𝜌𝑥 = 𝑥0𝑥1 (𝑁0 + 1 − 𝑥0) (𝑁1 + 1 − 𝑥1) (5)

Lemma 3.2. Let𝑤 be a point of domain D and suppose the reflec-
tion 𝑤 ′ of D is also in D. We have that 𝑤 and 𝑤 ′ have the same
query density, i.e., 𝜌𝑤′ = 𝜌𝑤 .

Similarly, the formula for the query density 𝜌𝑣,𝑤 of a pair of

points, 𝑣 and𝑤 , of D such that 𝑣 ⪯ 𝑤 is as follows.

𝜌𝑣,𝑤 = 𝑣0𝑣1 (𝑁0 + 1 −𝑤0) (𝑁1 + 1 −𝑤1) (6)

Again, we obtain the same query density by replacing one or both

points of a pair with their reflections, as shown in Lemma 3.3. We

note that this equation only holds when 𝑣 ⪯ 𝑤 . If not, there are

similar formulas depending on their (anti-) dominance relationship.

Lemma 3.3. Let 𝑣 ⪯ 𝑤 be points of domain D and let 𝑣 ′ and 𝑤 ′

be their reflections. We have

𝜌𝑣,𝑤 = 𝜌𝑣′,𝑤 if 𝑣 ′ ∈ D and 𝑣 ′ ⪯ 𝑤

𝜌𝑣,𝑤 = 𝜌𝑣,𝑤′ if𝑤 ′ ∈ D and 𝑣 ⪯ 𝑤 ′

𝜌𝑣,𝑤 = 𝜌𝑣′,𝑤′ if 𝑣 ′ ∈ D,𝑤 ′ ∈ D and 𝑣 ′ ⪯ 𝑤 ′

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

446

Our attack exploits the fact that given response multiset RM(𝐷),
one can compute the query densities of all the points and pairs of

points of the database without knowing their coordinates.

Two technical lemmas. The following lemmas will be used in

both our classification of the structure of E(𝐷) and in the analysis

of our algorithm. They will be applied to infer where a point (or

points) must be located based on query density constraints. The

first bounds the number of points𝑤 that satisfy 𝜌𝑤 = 𝛼 below the

trivial upper bound of 𝑁0𝑁1. The second lemma identifies when

points can be solved for, possibly up to a reflection symmetry.

Lemma 3.4. Let 𝛼 ∈ Z. Then, equation 𝜌𝑥 = 𝛼 has at most 2(𝑁0 +
𝑁1) integral solutions for 𝑥 .

Proof. We have that 𝜌𝑥 = 𝑥0𝑥1 (𝑁0 + 1 − 𝑥0) (𝑁1 + 1 − 𝑥1). For
each 𝛽 ∈ [𝑁0], when we set 𝑥0 = 𝛽 we get: 𝛼 = 𝛽𝑥1 (𝑁1 + 1 −
𝑥1) (𝑁0 + 1 − 𝛽) =⇒

𝑥2
1
− (𝑁1 + 1)𝑥1 +

𝛼

𝛽 (𝑁0 + 1 − 𝛽) = 0 (7)

Solving the above quadratic equation (with real coefficients) for

𝑥1, we get at most two integer solutions. For each 𝛾 ∈ [𝑁1], when
we set 𝑥1 = 𝛾 we get 𝛼 = 𝑥0𝛾 (𝑁1 + 1 − 𝛾) (𝑁0 + 1 − 𝑥0) =⇒

𝑥2
0
− (𝑁0 + 1)𝑥0 +

𝛼

𝛾 (𝑁1 + 1 − 𝛾) = 0 (8)

We obtain 2𝑁1 solutions by setting 𝑥1 to each value in [𝑁1] and
solving for 𝑥0. Thus, we obtain at most 2(𝑁0 + 𝑁1) solutions for 𝑥 .

□

We illustrate Lemma 3.5 in Figure 4.

0

10

105

5
x

σ(x)
v

p

w

Figure 4: In Lemma 3.5, we know points 𝑣 and 𝑤 , and want
to determine point 𝑥 . The grey (solid), green (dashed-dotted)
and purple (dashed) lines denote curves 𝜌𝑥 , 𝜌𝑣,𝑥 and 𝜌𝑤,𝑥 , re-
spectively. The intersection of these three curves returns a
unique location for 𝑥 . To demonstrate that we need points
in dominance (𝑣) and anti-dominance (𝑤) relationships with
𝑥 , we also show that if we know some point 𝑝 such that 𝑥 ⪯ 𝑝,
𝜌𝑝,𝑥 in red (dotted) just gives us the same solutions as 𝜌𝑣,𝑥 .

Lemma 3.5. Let 𝑣,𝑤 ∈ [𝑁0] × [𝑁1] and let 𝛼, 𝛽,𝛾 ∈ Z. Then the
system of equations

𝜌𝑥 = 𝛼

𝜌𝑣,𝑥 = 𝛽

𝑣 ⪯ 𝑥

(9)

has at most two integral solutions for 𝑥 . If 𝑥 is a solution, then 𝜎 (𝑥)
is the other solution if and only if 𝑣 ⪯ 𝜎 (𝑥). Additionally, if we have

𝜌𝑤,𝑥 = 𝛾

𝑤 ⪯𝑎 𝑥
(10)

then the system has at most one integral solution. Similarly, the system
has at most one solution if the last equation of Systems (9) and (10)
are replaced by 𝑥 ⪯𝑎 𝑣 and 𝑥 ⪯ 𝑤 , respectively.

Proof. Since 𝑣 ⪯ 𝑥 , we know which coordinates of {𝑣, 𝑥} are
minimal and maximal. Applying the formula for 𝜌 , we write the

first two equations of System 9 as

𝛼 = 𝜌𝑥 = 𝑥0𝑥1 (𝑁0 + 1 − 𝑥0) (𝑁1 + 1 − 𝑥1)
𝛽 = 𝜌𝑣,𝑥 = 𝑣0𝑣1 (𝑁0 + 1 − 𝑥0) (𝑁1 + 1 − 𝑥1)

We then rewrite the above equations as

𝛽

𝑣0𝑣1
= (𝑁0 + 1 − 𝑥0) (𝑁1 + 1 − 𝑥1)

𝜇 = 𝛼
𝑣0𝑣1

𝛽
= 𝑥0𝑥1

𝜔 = − 𝛽

𝑣0𝑣1
+ 𝑁0𝑁1 + 𝑁0 + 𝑁1 + 1 + 𝜇

= (𝑁1 + 1)𝑥0 + (𝑁0 + 1)𝑥1 .

(11)

Using substitution and the quadratic formula we can obtain the

following two solutions for System 11:

𝑥 ′ =
(
𝜔 − sqrt
2(𝑁1 + 1) ,

𝜔 + sqrt
2(𝑁0 + 1)

)
𝑥 ′′ =

(
𝜔 + sqrt
2(𝑁1 + 1) ,

𝜔 − sqrt
2(𝑁0 + 1)

) (12)

where sqrt =
√
𝜔2 − 4𝜇 (𝑁1 + 1) (𝑁0 + 1). Note that 𝑥 ′ and 𝑥 ′′ are

reflections across the main diagonal. Moreover, note that by Lem-

mas 3.2 and 3.3 we know that 𝜌𝑥 = 𝜌𝜎 (𝑥) and 𝜌𝑣,𝑥 = 𝜌𝑣,𝜎 (𝑥) . Thus,
both 𝑥 ′ and 𝑥 ′′ solve System (9) when they satisfy the third equa-

tion. For the backward direction, suppose that 𝑥 is a solution and

that 𝑣 ⪯̸ 𝜎 (𝑥). Then the third equation of System (9) would not be

satisfied and the lemma follows.

Let us now consider the additional equations in System (10).

Applying the formula for 𝜌 given that𝑤 ⪯𝑎 𝑥 yields

𝛾 = 𝜌𝑤,𝑥 = 𝑥0𝑤1 (𝑁0 + 1 −𝑤0) (𝑁1 + 1 − 𝑥1) .

We can then rearrange to obtain the system of equations

𝛾

(𝑁0 + 1 −𝑤0)𝑤1

= 𝑁1𝑥0 + 𝑥0 − 𝑥0𝑥1

− 𝛽

𝑣0𝑣1
+ 𝑁0𝑁1 + 𝑁0 + 𝑁1 + 1 = 𝑁1𝑥0 − 𝑁0𝑥1 + 𝑥0𝑥1

(13)

and then solve simultaneously to get unique values for 𝑥0 and 𝑥1.

Lastly, we consider the case when the last equation in Systems

(9) and (10) are replaced with 𝑥 ⪯𝑎 𝑣 and 𝑥 ⪯ 𝑤 , respectively. By

applying the rho equations we see that

𝛽 = 𝜌𝑣,𝑥 = 𝑣0𝑥1 (𝑁0 + 1 − 𝑥0) (𝑁0 + 1 − 𝑣0)
𝛾 = 𝜌𝑤,𝑥 = 𝑥0𝑥1 (𝑁0 + 1 −𝑤0) (𝑁1 + 1 −𝑤1)

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

447

which we can rearrange to get the system of equations

𝛾

(𝑁0 + 1 −𝑤0) (𝑁1 + 1 −𝑤1)
= 𝑥0𝑥1

𝛽

𝑣0 (𝑁1 + 1 − 𝑣1)
= 𝑁0𝑥1 + 𝑥1 − 𝑥0𝑥1 .

(14)

and then solve for unique values of 𝑥0 and 𝑥1. □

We make the standard assumption that arithmetic on numbers

of size (number of bits) 𝑂 (log𝑁0𝑁1) can be done in constant time.

We also employ full-precision arithmetic and use symbolic repre-

sentations for non-integer values (e.g., square root of a number that

is not square).

3.2 Technical Overview
In the remainder of this section, we work with a square domain

D = [𝑁] × [𝑁] in order to provide an overview of our work

without the complications of a general domain. To understand

the implications of solving the FDR problem, we are interested

in the structure of E(𝐷). A first observation is that applying the

8 “rigid motions of the square” (rotations and horizontal/vertical

reflections) to 𝐷 will result in equivalent databases. It is natural to

conjecture that E(𝐷) is generated this way, and that |E(𝐷) | ≤ 8

(some databases will be invariant under these symmetries, resulting

in an upper bound). Interestingly, the correct bound is exponential.

An initial attempt. Let us examine what happens if we naively

generalize the prior attack of [23] attack to two dimensions. The

first step is to use RM(𝐷) to compute the query density 𝜌𝑥 for

every point 𝑥 . Next, we can attempt to solve for 𝑥 , up to the rigid

motions of the square. This is depicted in Figure 5. As a function

of two unknown coordinates over the reals, 𝜌𝑥 is a degree-4 curve.

Solving this involves intersecting the curve with the plane defined

by 𝛼 , which results in the curve on right side of the figure. It is al-

ready apparent that the situation in two dimensions is dramatically

different form one dimension: Instead of getting two real points in

this intersection, we get an infinite number of real solutions.

We partially resolve this situation by noting that the points we

want on the curve must be integral since the record values in D
take on integer values. One could potentially apply techniques

from number theory to compute integral solutions directly, but

this is beyond the scope of this paper. By inspection, we can see

that if 𝑥 ∈ D is an integral solution, then we have up to eight

integral solutions obtained by reflecting and rotating, as shown

(a)

200

400

600

𝑥0

𝑥1

(b) 𝑥0

𝑥
1

Figure 5: Solving 𝜌𝑥 = 𝛼 (Equation 5): (a) intersecting plane
𝑧 = 𝛼 with surface 𝑧 = 𝑥0𝑥1 (𝑁 + 1−𝑥0) (𝑁 + 1−𝑥1) defining 𝜌𝑥 ;
(b) curve of the solutions, where the 8 integral points (in red)
are symmetricwith respect to rigidmotions of the square. In
general, there are additional integral points on this curve.

in Figure 5(b). These points are essentially unique, as the entire

database can be permuted this way and be equivalent. But there is no

reason that these should be the only integral solutions. Experiments

indicate that the curve of Figure 5 can have an unbounded number

of integral solutions (i.e. the number of solutions grows with 𝑁),

partitioned into groups of at most 8 by the rigid motions.

Unfortunately for the attacker, another symmetry may occur

that is not covered by the rigid motions of the square. For example,

consider the database of Figure 6, which comprises 8 red points.

Reflecting any subset of the points results in an equivalent database.

Moreover, these reflections are not rigid motions of the square.

0

10

105

5

Figure 6: Reflecting any subset of the 8 database points
yields an equivalent database. Further applying rigid mo-
tions, we get a total of 8 × 2

8 = 1, 024 equivalent databases.

FDR in two dimensions: Our approach. We obtain an FDR al-

gorithm by giving a new approach that teases apart the subtle

structure of E(𝐷), even when it is exponentially large. The first

step is to identify 2, 3, or 4 extreme points that “contain” the rest of

the database; in particular these points will collectively achieve the

maximum and minimum values in each dimension. We find these

by looking for a minimal set of points such that their co-occurrence

in a query implies the entire database is in that query.

We then algebraically solve for the possible assignments of these

points in D by carefully applying Lemmas 3.4 and 3.5, obtaining

a polynomial list of solutions. Then for each possible solution, we

recover a family of equivalent databases, organized by their freely-

moving “components”. Taking a union over all of the families for

the possible solutions for the extreme points gives E(𝐷).

4 CLASSIFYING EQUIVALENT DATABASES
Before delving into the algorithm, we need to know what the

best we can do is. Given RM(𝐷) for some database 𝐷 , an algo-

rithm can at best find E(𝐷), the set of all databases 𝐷 ′
such that

RM(𝐷 ′) = RM(𝐷). Unlike the one-dimensional case, E(𝐷) has
more structure than a simple reflection. As shown in Figure 6, we

can obtain databases equivalent to 𝐷 by repeatedly performing a

transformation that replaces a subset of points with their reflec-

tions without affecting the dominance relation of these points with

respect to all the other points.

Components.To begin understanding how these equivalent databases

are formed, define a component of 𝐷 to be a minimal non-empty

subset 𝐶 of points of 𝐷 such that for every point 𝑝 ∈ 𝐶 and point

𝑞 ∈ 𝐷 such that 𝑞 ∉ 𝐶 , one of the following holds (see Figure 7):

• 𝑝 and 𝜎 (𝑝) both dominate 𝑞; or

• 𝑝 and 𝜎 (𝑝) are both dominated by 𝑞.

It is immediate that any two components of a database are disjoint,

because if their intersection was non-empty, it would form a smaller

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

448

component. The components of a database are uniquely determined,

as formally stated below.

Lemma 4.1. Any database can be uniquely partitioned into com-
ponents.

The proof to Lemma 4.1 can be found in the Appendix.

A point 𝑝 of a domain D is said to be reflectable if the reflection
𝜎 (𝑝) of 𝑝 is a point of D. We extend this definition to components

by saying that a component𝐶 of a database 𝐷 is reflectable if all the

points of 𝐶 are reflectable. For technical reasons, if a component

consists of a single point on the main diagonal, then we define it

to not be reflectable. The following lemma, illustrated in Figure 7,

states that replacing the points of a reflectable component with

their reflections leaves the search pattern unchanged.

p′

q′
r′

w′

150

10

q

v
t

105

5 s

r

u

u′
t′

v′

p
r′

q′
s′

p′

Figure 7: A database 𝐷 over domain [14] × [9]. Solid circles
represent database points and hollow circles represent their
reflections. 𝐷 has components 𝐶1 = {𝑝}, 𝐶2 = {𝑞, 𝑟, 𝑠}, and
𝐶3 = {𝑡,𝑢, 𝑣}. 𝐶1 and 𝐶3 are nonreflectable while 𝐶2 is re-
flectable. Replacing the points of 𝐶2 with their reflections
yields a database equivalent to 𝐷 .

Lemma 4.2. Let𝐶 be a reflectable component of a database, 𝐷 , and
let 𝐷 ′ be database obtained from 𝐷 by replacing 𝐶 with component
𝐶 ′ comprising 𝜎 (𝑝) for every point 𝑝 ∈ 𝐶 . We have that 𝐷 and 𝐷 ′

are equivalent.

The proof of Lemma 4.2 can be found in the Appendix and its

main argument is schematically illustrated in Figure 8.

Before going further, we show that the set of a equivalent databases

may be arbitrarily large (in contrast to the one-dimensional case).

We can exploit Lemma 4.2 to build a database that admits an expo-

nential number of equivalent databases (see Figure 6).

Theorem 4.3. For every integer 𝑅, there exists a family of 2𝑅

databases with 𝑅 points that are equivalent to each other.

q′

c

e

B

A

C

D

q′

c

e

e′

B

A

C′

d

d′

D′

f

Figure 8: Case 3 of the proof of Lemma 4.2: database 𝐷 ′ is
obtained from 𝐷 by reflecting component 𝐶 to yield 𝐶 ′; the
blue range query (𝑐, 𝑒) on𝐷 and the red range query (𝑐, 𝑒 ′) on
𝐷 ′ return the same response, as seen from the intersection
(𝑐, 𝑓) and differences, (𝑑, 𝑒) and (𝑑 ′, 𝑒 ′), of the two ranges.

Proof. Let 𝐷 be the database over domain [𝑅 + 1] × [𝑅 + 1] with
points (𝑖 + 1, 𝑖) for 𝑖 = 1, · · · , 𝑅. We have that 𝐷 has 𝑅 reflectable

components, each comprising a single point. Applying Lemma 4.2,

we obtain 2
𝑅
equivalent databases by replacing subsets of the points

of 𝐷 with their reflections. □

Classification theorem. We now prove that for any database

𝐷 , the set of equivalent databases can be systematically described.

At a high level, we show that any database equivalent to 𝐷 can be

formed by starting from a small number of “seed” databases and

reflecting their components.

Theorem 4.4. Given a database𝐷 with points from domain [𝑁0]×
[𝑁1], there exists a set S of 𝑂 (𝑁0 + 𝑁1) databases such that any
database equivalent to 𝐷 can be obtained from a database 𝐷 ′ ∈ S
by reflecting a subset of the reflectable components of 𝐷 ′, and then
reflecting the resulting database vertically and/or horizontally.

The proof of Theorem 4.4 can be found in the Appendix. This

proof includes much of the reasoning used to prove our later algo-

rithm correct, but we present a self-contained version for clarity.

The seed databases correspond to sets of integral solutions to cer-

tain equations, which are theoretically possible up to the stated

bound. In experiments with real data, we only ever needed one seed

database. We did observe real databases with several reflectable

components.

5 FULL DATABASE RECONSTRUCTION
In this section, we present our full database reconstruction (FDR)

attack in two dimensions.

5.1 Overview of the attack
Our FDR attack relies on the contents of both RS(𝐷) and RM(𝐷)
and comprises the following steps:

(1) We identify the extreme points of the database, including

any corner points. (Algorithm 1)

(2) We extract the left-most, left, and right-most, right, points
and segment the remaining points in three sets: one with

all points above left and right, one with all points between

them, and one with all points below them. (Algorithm 2)

(3) We find all possible locations for points left and right, and
use them to identify one or two locations for every point in

the database. (Algorithm 4)

(4) Using the recovered locations, we partition the database into

components. (Algorithm 5)

(5) We prune the locations for the points in each partition down

to one location per point. (Algorithm 3)

5.2 Preprocessing
Before we delve into the algorithm, we will preprocess the in-

put. Given multiset RM(𝐷), we generate the corresponding set

RS(𝐷). At this point, we would like to note that RM(𝐷) has size
𝑂 ((𝑁0𝑁1)2) = 𝑂 (𝑁 2) and RS(𝐷) has size 𝑂 (min(𝑅4, 𝑁 2)). A sin-

gle response can contain up to 𝑅 identifiers. Thus, it takes time

𝑂 (min(𝑅5, 𝑅𝑁 2)) to read RS(𝐷) and time 𝑂 (𝑅𝑁 2) to read RM(𝐷).
We also preprocess RM(𝐷) and RS(𝐷) making sure that each

value in the domain corresponds to at most one identifier. We do

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

449

that by finding the smallest set 𝑆 in RS(𝐷) that contains a given ID.

Then, we go through RM(𝐷) and RS(𝐷) replacing set 𝑆 from each

response with a new identifier.

5.3 Get extremes
The first step of the reconstruction algorithm finds a minimal set

of extreme points of database 𝐷 , i.e., a set 𝐸 ⊆ 𝐷 of smallest size

such that for any point 𝑝 ∈ 𝐷 there exist points left, right, bot, and
top in 𝐸 such that left

0
≤ 𝑝0 ≤ right

0
and bot1 ≤ 𝑝1 ≤ top

1
. Note

that the same point of 𝐸 may be the minimum or maximum in both

dimensions, i.e., we may have left = bot or right = top. We call such

a point a corner of the database.
Suppose database 𝐷 has at least two distinct points. We consider

the following three cases for a minimal set of extreme points, 𝐸, of

𝐷 (see Figure 9):

Case 1: 𝐸 has two points, both corners: 𝑝 = left = bot and 𝑞 =

right = top.
Case 2: 𝐸 has three points, one of which is a corner: 𝑝 = left, 𝑞 =

right = top, and 𝑟 = bot.
Case 3: 𝐸 has four points, none of which is a corner: 𝑝 = left, 𝑞 = top,

𝑟 = right, and 𝑠 = bot.
Algorithm 1 takes as input RS(𝐷) and returns a constant size

list of hashmaps. Each hashmap contains four entries, each corre-

sponding to an extreme point (minimum or maximum coordinate)

in a dimension.

We first identify the points on two, three or four edges of the

database, depending on if we have case (1), (2) or (3) respectively.

We do so by finding the second largest response in RS(𝐷), 𝑆1. The
difference of 𝑆1 with the set containing all database points is an

edge of the database. We similarly find the rest of the edges.

Then, we identify the extreme points of each edge. The key idea

is that each extreme point only has one point right next to it on

the edge. The non-extreme points have a point on either side. Thus,

if we look at sets of size two in RS(𝐷) that contain only points in

one edge, the extreme points will each be in exactly one such set.

Every other point will be in two.

Once we have identified the extreme points of each edge, we

need to find any corners, and decide on which point from each

edge we’ll return as extreme. We simply iterate through all subsets

of size 2,3, and 4 of extreme points and pick the first subset, such

that the smallest response in RS(𝐷) that contains all points in this

subset is the largest one. The algorithm then returns all possible

configurations of this subset of points.

Lemma 5.1. Let 𝐷 be a database with 𝑅 records and let RS(𝐷)
be its response set. Algorithm 1 returns all possible configurations of
extreme points of 𝐷 (up to symmetries) in time 𝑂 (min(𝑅5, 𝑅𝑁 2)).

The proof of Lemma 5.1 can be found in the Appendix.

(1)

𝑝

𝑞
(2)

𝑝

𝑞

𝑟

(3)

𝑝

𝑞

𝑟

𝑠

Figure 9: Three mutually exclusive cases for a minimal set
of extreme points of a database: (1) two corners, 𝑝 and 𝑞;
(2) one corner, 𝑞; (3) no corners.

Algorithm 1: FindExtremes(RS(𝐷))
1: Let 𝐿 be the largest set in RS(𝐷) and Edges, PosExtremes empty lists

2: Let 𝑆1 be the 2
𝑛𝑑

largest set in RS(𝐷) . Add 𝐿 − 𝑆1 to Edges.
3: Let 𝑆2 be the 2

𝑛𝑑
largest set that contains 𝐿 − 𝑆1. Add 𝐿 − 𝑆2 to Edges.

4: Let 𝑆3 be the 2
𝑛𝑑

largest set that contains 𝐿 − 𝑆1 and 𝐿 − 𝑆2 (if it

exists). Add 𝐿 − 𝑆3 to Edges.
5: Let 𝑆4 be the 2

𝑛𝑑
largest set that contains 𝐿 − 𝑆1, 𝐿 − 𝑆2 and 𝐿 − 𝑆3 (if

it exists). Add 𝐿 − 𝑆4 to Edges.
6: Let PosExtremes be an empty list.

7: for all 𝐸 ∈ Edges do
8: if |𝐸 | = 1 then
9: Add the one ID in 𝐸 to PosExtremes
10: else
11: Consider the responses of size 2 in RS(𝐷) containing only IDs

of 𝐸. Count in how many such responses each ID of 𝐸 appears and

add any 𝐼𝐷s that appear exactly once to PosExtremes
12: for 𝑖 = 2 to 4 do
13: for all subsets of IDs 𝐸 ⊆ PosExtremes such that |𝐸 | = 𝑖 do
14: if 𝐿 is the only set in RS(𝐷) containing 𝐸 then
15: { The 𝑖 IDs of 𝐸 refer to a minimal set of extreme points }

16: Let PosConfigs be an empty list

17: for all possible configurations of extreme point IDs in 𝐸 do
18: Add a hashmap to PosConfigs with entries mapping keys left,

right, bot, and top, to their respective IDs of 𝐸.

19: return PosConfigs

5.4 Segment the database
Given a set of extreme points left, right, bot, and top computed by

Algorithm 1, our goal is to segment the points of the database 𝐷

into three sets, 𝑆1, 𝑆2, and 𝑆3 according to their vertical (second co-

ordinate) arrangement with respect to the extreme points. Namely,

these sets are defined as follows:

• 𝑆1 comprises the points of 𝐷 that are vertically above both

left and right;
• 𝑆2 comprises the points of 𝐷 that are vertically in between

left and right (included);
• 𝑆3 comprises the points of 𝐷 that are vertically below both

left and right.
Note that in Case 1 (as defined in Section 5.3), we have a trivial

segmentation where 𝑆1 = 𝑆3 = ∅ and 𝑆2 = 𝐷 . Two subcases for the

segmentation in Case 3 are illustrated in Figure 10.

Algorithm 2 (Segmentation) takes as input RS(𝐷) and PosConfigs
(output by Algorithm 1) and returns a list of tuples, where each

tuple comprises of two IDs, for left and right, and three sets of IDs.

Algorithm 2: Segmentation(PosConfigs,RS(𝐷))
1: Let Segmentations be an empty list.

2: for all hashmaps 𝐻 ∈ PosConfigs do
3: Let 𝑆2 be the smallest set in RS(𝐷) containing𝐻 [left] and𝐻 [right]
4: Let𝑇 be the smallest set in RS(𝐷) containing 𝐻 [top], 𝐻 [left] and

𝐻 [right]
5: 𝑆1 = 𝑇 − 𝑆2

6: 𝑆3 = 𝐷 −𝑇

7: Add ((𝐻 [left], 𝐻 [right]), (𝑆1, 𝑆2, 𝑆3)) to Segmentations.
8: return Segmentations

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

450

Lemma 5.2. Let 𝐷 ∈ D𝑅 be a database with 𝑅 records and let
RS(𝐷) be the response set of 𝐷 . Let PosConfigs be the output of Algo-
rithm 1 on RS(𝐷). Then Algorithm 2 returns a list that includes each
possible set of extreme points, denoted (left, right), and their corre-
sponding database segments (𝑆1, 𝑆2, 𝑆3) in 𝑂 (min(𝑅5, 𝑅𝑁 2)) time.

The proof of Lemma 5.2 can be found in Appendix B.5.

𝐷

left

𝑆2

𝑆3

𝑆1 righttop

bot

𝐷

left right

top

bot

𝑆2
𝑆3

𝑆1

Figure 10: Segmenting the database into three sets of points.

5.5 Find candidate locations
Algorithm 4 finds candidate locations for all the database records.

Each hashmap in list Segmentations has two keys, denoted left,
and right, which provide the IDs of the leftmost and rightmost

points, as defined in Section 5.3. First, we use 𝜌left to compute left
such that left

0
∈ [𝑁0] and left

1
∈ [𝑁1]. We can obtain at most

2(𝑁0 +𝑁1) solutions as shown in Lemma 3.4. We then use a second

parameter, 𝜌left,right , to obtain the set of equations in System 9, and

then solve for all valid solutions of left
0
, left

1
, right

0
, and right

1
.

Once we have located left and right, we can use these points to

compute at most two potential solutions for the remaining records

using Lemma 3.5. The pseudocode for computing the possible values

of each database can be found in Algorithm 4 in Apendix B.

Lemma 5.3. Let 𝐷 ∈ D𝑅 be a database with 𝑅 records and let
RM(𝐷) be its response multiset. Algorithm 4 computes in 𝑂 (𝑅𝑁 2)
time a list of hashmaps, denoted Solutions, such that for each database
�̂� equivalent to 𝐷 , i.e., �̂� ∈ E(𝐷), there exists 𝐻 ∈ Solutions with the
property that for all ID ∈ [𝑅], we have �̂� [ID] ∈ 𝐻 [ID].

The proof of Lemma 5.3 can be found in Appendix B.6.

5.6 Partition a database into components
Algorithm 5 (Partition) takes as input a database 𝐷 and returns the

list of its components, each labeled with a flag indicating whether

it is reflectable. I.e., the output of the algorithm is list of pairs

(𝐶, refl), where𝐶 is a component of 𝐷 and refl is a Boolean indicat-

ing whether 𝐶 is reflectable or not. We represent this database 𝐷

using a hashmap, that maps identifiers to their one or two possi-

ble values. The algorithm also returns a list of projections on the

diagonal to aid Algorithm 3.

For a record ID of database 𝐷 , let low(ID) and high(ID) be the
lower and higher orthogonal projections of point 𝑣 = 𝐷 [ID] on
the main diagonal, respectively (see Figure 11), i.e., low(ID) and
high(ID) are the intersections of the main diagonal with horizon-

tal and vertical lines through point 𝑣 , where low(ID) ⪯ high(ID).
Clearly, a point and its reflection have the same orthogonal projec-

tions on the main diagonal.

Algorithm 5 is based on the observation that if we project all the

points of 𝐷 onto the main diagonal, the projections of the points

of a component are consecutive along the diagonal (see Figure 11).

The algorithm finds the reflectable components by "walking up"

p′

q′
r′

w′

150

10

105

5

20

Figure 11: Partitioning a database with 5 points (filled cir-
cles) over domain [19]×[9] into a reflectable component (bot-
tom left) and a nonreflectable component (top right) using
Algorithm 5. Reflections of points are depicted as empty cir-
cles, and projections on the main diagonal as cross marks.

the diagonal and keeping track of the IDs of the points whose

projections have been encountered so far. A component is formed

once both projections of its points have been seen.

Extra care must be taken in case multiple records are associated

with points that have the same projection, say 𝑝 . In that case, we

process first IDs such that 𝑝 is the higher projection, next IDs such

that 𝑝 is both the upper and lower projection (i.e., 𝑝 = 𝐷 [ID]), and
finally IDs such that 𝑝 is the lower projection. The pseudocode for

this algorithm, Algorithm 5 can be found in the Appendix.

Lemma 5.4. Given a database 𝐷 with 𝑅 identifiers, each with one
or two possible locations, 𝑝, 𝜎 (𝑝), from domain [𝑁0] × [𝑁1], Algo-
rithm 5 (Partition) partitions 𝐷 into its reflectable and nonreflectable
components in time 𝑂 (min(𝑅 log𝑅, 𝑅 + 𝑁0, 𝑅 + 𝑁1)).

The proof of Lemma 5.4 can be found in the Appendix.

5.7 Prune the candidate reconstructions
Algorithm 3 utilizes the algorithms discussed so far to get families

of possible databases and their (reflectable and non-reflectable)

components. To achieve FDR, we must prune the solution set and

determine the 1 or 2 possible configurations for each component.

We shall iterate through each component in each family. For

each component 𝐶 , we create a graph 𝐺 , whose nodes are the iden-

tifiers of 𝐶 . Similarly to Algorithm 5, we find the low and high

projections of each identifier on the diagonal. We again “walk-up"

the diagonal, adding an edge between ID1 and ID2, if the boxes

generated by (low(ID1), high(ID1)) and (low(ID2), high(ID2)) in-
tersect in more that one points. More formally, when high(ID1) >
low(ID2) and high(ID2) > low(ID1). Any identifiers for which

high(ID) = low(ID) are ignored for the purposes of 𝐺 . The con-

struction of graph 𝐺 is illustrated in Figure 12.

Then, if all identifiers on this component have two possible

locations, we pick one identifier and discard one of its locations.

Now, we do a depth-first search on graph 𝐺 starting on an iden-

tifier which has only one possible location. On each step of the

search we traverse some edge (ID1, ID2), where at least one of the
identifiers, say ID1 has only one location, say 𝑟 . If the other identi-

fier has two 𝑢,𝑢 ′, we calculate 𝜌𝑢,𝑟 and 𝜌𝑢′,𝑟 , and determine which

one is consistent with RM(𝐷). It cannot be that both are consistent,

because in that case there wouldn’t be an edge between (ID1, ID2).
In case none are consistent, then this database family is invalid.

Algorithm 3 takes as input 𝐷’s response multiset, RM(𝐷), and
returns a list of families of databases. Each family consists of a

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

451

150

10

105

5

20

20

15

r

a

u

b

c
d

e

r a

ub

c

de

Figure 12: (left) Database with 7 records and 3 components
over domain [19]×[19]. The true points are shownwith filled
circles, their reflections with empty circles, and their projec-
tions on the main diagonal with cross marks. (right) Graphs
for the components constructed by Algorithm 3, where an
edge between two records indicates that fixing the point of
one record fixes the point of the other record.

database �̂� and its partition into components. The attacker produces

𝐸 (𝐷) using the output of Algorithm 3. Theorem 5.5 shows that

that all possible reconstructions of 𝐷 can be obtained by taking a

database �̂� returned by the algorithm, applying a rigid motion, and

reflecting a subset of its components.

Theorem 5.5. Given the response multiset (RM(𝐷)) of some data-
base 𝐷 with 𝑅 records over domain [𝑁0] × [𝑁1], Algorithm 3 (FDR)
returns an encoding of E(𝐷), the set of databases equivalent to 𝐷 ,
of size 𝑂 (𝑁0 + 𝑁1) in time 𝑂 ((𝑁0 + 𝑁1) (𝑅𝑁 2 + 𝑅 log𝑅)), where
𝑁 = 𝑁0𝑁1.

The proof of Theorem 5.5 can be found in the Appendix. We

recall from Section 5.2 that reading the input to the algorithm takes

time 𝑂 (𝑅𝑁 2).

6 EXPERIMENTAL EVALUATION
Our algorithm leaves a few issues open for empirical exploration:

How large a set of seed databasesS would an adversary typically re-

construct and howmany components would each of those databases

contain? For a rectangular domain, how many components are re-

flectable? We explore these questions through data representative

of what might realistically be stored in an encrypted database with

two-dimensional range queries.

Our datasets. We use hospital records from the years 2004, 2008,

and 2009 of the Healthcare Cost and Utilization Project’s Nation-

wide Inpatient Sample (HCUP, NIS)
∗
, seven years, 2012-2018, of

Chicago crime locations from the City of Chicago’s data portal,
†

and the mobile phone records of Malte Spitz, a German Green party

politician.
‡

Prior work also used HCUP data for experimental analysis. The

2009 HCUP data was previously used for the KKNO and LMP at-

tacks, and all three years were used in GLMP19’s volume leakage

∗
https://www.hcup-us.ahrq.gov/nisoverview.jsp. We did not deanonymize any of

the data, our attacks are not designed to deanonymize medical data, and the authors

who performed the experiments underwent the HCUP Data Use Agreement training

and submitted signed Data Use Agreements.

†
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2

‡
https://crawdad.org/spitz/cellular/20110504/

Algorithm 3: FDR(RM(𝐷))
1: Databases = [], RS(𝐷) is the set of RM(𝐷)
2: PosConfigs = FindExtremes (RS(𝐷))(Algorithm 1)

3: Segmentations = Segmentation(PosConfigs,RS(𝐷)) (Algorithm 2)

4: Solutions = Solve (PosConfigs, Segmentations,RM(𝐷)) (Algorithm 4)

5: for �̂� in Solutions do
6: Partition = Partition(�̂�) (Algorithm 5)

7: for each (Component, refl) in Partition do
8: Let Resolved be the set of ID ∈ Component s.t. |�̂� [ID] | = 1

9: Let Unresolved be the set of ID ∈ Component s.t. |�̂� [ID] | = 2

10: if Unresolved ≠ ∅ AND (Resolved = ∅ OR Resolved only contains

points on the diagonal) then
11: Pick random ID ∈ Unresolved and remove one entry of �̂� [ID]
12: Remove ID from Unresolved and add it to Resolved
13:

14: Construct graph𝐺 with nodes all ID ∈ Component, ignoring
points on the diagonal. There is an edge between ID1, ID2 in𝐺 , if

the boxes defined by (low (ID1), high(ID1)) and (low (ID2),
high(ID2)) intersect in more than one point.

15:

16: Let Edges(𝐺) be an iterator of the edges of𝐺 given by a

depth-first search starting at some ID1 ∈ Resolved.
17: for each (ID1, ID2) ∈ Edges(𝐺) do
18: // At each iteration, one ID is added to Resolved or the current

solution �̂� is discarded

19: if ID2 ∈ Unresolved then
20: Let �̂� [ID1] = 𝑟

21: 𝑚 = the number of responses in RM(𝐷) containing ID1 & ID2

22: if 𝑟 ∈ �̂� [ID2] then
23: Remove 𝑟 from �̂� [ID2]
24: for 𝑢 in �̂� [ID2] do
25: Compute 𝜌𝑢,𝑟 using Equation 6

26: if 𝜌𝑢,𝑟 ≠𝑚 then
27: Remove 𝑢 from �̂� [ID2]
28:

29: if |�̂� [ID2] | = 1 then
30: Add ID2 to Resolved and remove it from Unresolved
31: else
32: // Here, �̂� [ID2] = ∅
33: Go to line 5 (discard the current solution �̂�)

34: Compute the response multiset RM(�̂�)
35: if RM(�̂�) = RM(𝐷) then
36: Add �̂�, Partition to Databases
37: Return Databases

paper [19, 23]. These years were chosen due to their prior use and

changes in HCUP’s sampling methodology, but other years should

give similar results. Also, we explore a new setting for access pat-

tern attacks, geographic datasets indexed by longitude and latitude.

We use both Chicago crime data and the phone record locations

of Malte Spitz. Each Chicago dataset represents the locations of

crimes within a district during a year. The Spitz data were stored

by the Deutsche Telekom and contributed by Malte Spitz to Craw-

dad. More details on how we chose our attributes can be found in

Appendix C.

For the HCUP data, we consider databases comprising records

from a single hospital and a given a year indexed by two attributes.

For the Chicago data, since longitude and latitude are given with up

to 12 decimal points, wemap a location (𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔) to point (𝑤0,𝑤1)
of domainD = [𝑁0] × [𝑁1] by setting𝑤0 =

(𝑙𝑎𝑡−𝑙𝑎𝑡𝑚𝑖𝑛) ·(𝑁0−1)
𝑙𝑎𝑡𝑚𝑎𝑥−𝑙𝑎𝑡𝑚𝑖𝑛

+ 1

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

452

Table 2: Results of our experiments on real-world datasets.
In the third column, 𝑛0/𝑛1/𝑛2/. . . means that 𝑛𝑖 databases
have 𝑖 reflectable components, 𝑖 = 0, 1, 2,

Dataset and attributes Domain # DBs by # of

reflectable

components

DBs

N
I
S
2
0
0
4

AGE & LOS 91x366 1004/0. . . 1004

AGEDAY & ZIPINC 365x4 677/0. . . 677

AGE<18 & NPR 18x16 972/0. . . 972

AMONTH & ZIPINC 12x4 948/0. . . 948

NDX & NPR 16x16 0/997/7/0. . . 1004

N
I
S
2
0
0
8

AGE≥18 & NPR 73x18 1055/0. . . 1055

AMONTH & NCH 12x16 1005/0. . . 1005

NCH & NDX 16x16 0/1054/1/0/1/0. . . 1056

NCH & NPR 16x16 0/1053/3/0. . . 1056

NDX & NPR 16x16 0/1052/4/0. . . 1056

N
I
S
2
0
0
9

AGE<18 & LOS 18x366 968/0. . . 968

AMONTH & AGEDAY 12x365 644/0. . . 644

NCH & NDX 26x26 0/1043/7/0. . . 1050

NCH & NPR 26x26 0/1049/1/0. . . 1050

NDX & NPR 26x26 0/1017/3/0. . . 1050

Chicago LAT & LONG 9, 19, 39, 59,

99, 199, 1999

1072/6/0. . . 1078

Spitz LAT & LONG ≤ 677 × 677 0/117/35/9/3/0

/0/0/2/0. . .

166

and 𝑤1 =
(𝑙𝑜𝑛𝑔−𝑙𝑜𝑛𝑔𝑚𝑖𝑛) ·(𝑁1−1)

𝑙𝑜𝑛𝑔𝑚𝑎𝑥−𝑙𝑜𝑛𝑔𝑚𝑖𝑛
+ 1, where division is rounded to

the nearest integer. We set 𝑁0 = 9, 19, 39, 59, 99, 199, and 1999, and

set 𝑁1 so that the domain preserves the ratio of longitude range to

latitude range of the district. The resulting domains are square for

only 6 districts. For Spitz data we choose to use square geographic

domains. We use the actual longitudes and latitudes multiplied by

100 as integers and center the smaller range in the square domain.

The maximum 𝑁0 = 𝑁1 we observe is 677.

To generate the leakage for our attack, for each database, we build

the response multiset by querying each possible range (𝑐, 𝑑) ∈ D2

such that 𝑐 ⪯ 𝑑 .

Our findings. Our results are shown in Table 2. Recall that the

reconstruction returns a set S of seed databases that generates a

family of

∑
𝐷∈S 4 · 2𝑟 (𝐷)

equivalent databases, where 𝑟 (𝐷) denotes
the number of reflectable components of 𝐷 . For all databases, our

reconstruction found a single seed database (i.e., |S| = 1). Thus, we

report the number of reflectable components for this database. The

number of reflectable components for the Chicago data is consis-

tent for all chosen domains, so we compress our seven longitude

domains into a single row in the table. The majority of our datasets

leaked an equivalent family of minimal size (15713 out of 15792 in-

stances). Across all our experimental attributes, a total of 61 datasets

leaked a family of databases of size 16, 9 leaked a family of size 32,

7 leaked a family of size 64, and 2 leaked a family of size 1024.

Whether a database has a rectangular or square domain is a

major determining factor in the number of equivalent databases.

In our experiments, all components in rectangular databases could

be fixed to not be reflected, suggesting that few real rectangular

databases with similar attributes would have a large number of

equivalent databases. This accounts for 8345 of our datasets. In the

square case, the number of reflectable components varies with the

distribution of the data. Among 7322 square HCUP datasets, there

were 26 datasets with two reflectable components and only one with

4 components. However, the square Spitz datasets were frequently

distributed along the main diagonal, leading to larger families of

equivalent databases. Of the 166 Spitz datasets, around one fourth

of the instances had ≥ 2 reflectable components, with a maximum

of eight components. To illustrate the structure of the Spitz data,

we show in Figure 1 the phone record locations for 08/31/2009

and our reconstruction of them
§
. Our algorithm finds 8 reflectable

components, (4 single points and 4 multi-point components shown

as shaded squares), resulting in 4 · 28 = 1024 equivalent databases.

Conclusions. The data show that one may rarely see symmetries

arising frommultiple seed databases or from reflectable components

in rectangular domains. These were expected, as those symmetries

correspond to number-theoretic coincidences in the data. We also

conclude that multiple components will plausibly appear in real

data. Some data types tend to have a single component, while other

types have some larger number, and sporadic examples with sev-

eral components can occur. For example, when the Spitz data was

divided into days, multiple components could arise when the travel

was roughly diagonal. Over a longer period, however, the diagonal

structure was lost. We ran an additional test using a database of

Spitz records from every day and found only a single reflectable

component. In the Chicago crime data, the distribution of events

was also rarely so well-structured. In the HCUP datasets, we ob-

served that occasional datasets with correlated attributes could

have multiple components, but most instances lacked this type of

diagonal distribution.

7 AUTOMATICALLY FINDING 𝐷 IN E(𝐷)
Our attack in Section 5, and those of prior work [19, 23] only re-

cover E(𝐷) and not 𝐷 . Indeed, this is the best one can hope for

when giving a worse-case algorithm. However in practice it is intu-

itive that an attacker could sometimes do better by observing the

distribution of the data recovered and applying one of the allowed

symmetries to best match the expected distribution. This section

formalizes such an attack for one and two-dimensional cases.

Attack setting.We assume that an attacker has recovered E(𝐷test)
and aims to determine which member of that set is the correct

database 𝐷test. With no context this is impossible, so we assume

that the adversary has auxiliary knowledge of the data through a

similar dataset 𝐷train. In our experiments below, we give the attack

auxiliary data in the form of a histogram of 𝐷train, the mean of

𝐷train, or a single point from 𝐷test.

This attack setting is not totally realistic because if an attack

had such auxiliary knowledge then it would probably also apply it

during the initial phase that recovered E(𝐷test), but doing so is an

open problem that requires different ideas. For nowwe interpret our

experiments here as determining if sometimes recovering E(𝐷test)
essentially allows recovering 𝐷test itself.

Our attack.We will first consider the case where the attack can

view a histogram Htrain of 𝐷train. In one dimension, Htrain is on the

domain D and in two dimensions, Htrain is a joint histogram over

D. Our attack recovers the family of equivalent databases (either

through the KKNO attack in one dimension or the attack from

§
Figure 1 map source: Google Maps

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

453

Section 5 in two dimensions) and tries to identity which database

in the family is the true 𝐷test. Given E(𝐷test) = {𝐷0, . . . , 𝐷𝑘 }, the
attacker will compute 𝑘 histograms H0, . . . ,H𝑘 and select the 𝐷𝑖

with the H𝑖 that minimizes the mean squared error with respect to

Htrain. More formally, define

MSE(Htrain,H𝑖) =
1

|D|
∑
𝑥 ∈D

(Htrain (𝑥) − H𝑖 (𝑥))2 .

The attack selects D𝑖 corresponding to H𝑖 with the minimum

MSE(Htrain,H𝑖).
Next, we also consider the case of a weaker adversary, who

knows only the mean from the similar database, 𝜇train. In that case,

the attack selects the database with the closest mean to the training

data, minimizing |𝜇train − 𝜇𝑖 |.
Because the means and histograms of geographic data in terms

of latitude and longitude seem less realistic to be available publicly

than the means and histograms of medical attributes, we consider

another weak adversary who only knows a single location, 𝑝 , in

the test database. The attack outputs a guess uniformly at random

from the equivalent databases which contain 𝑝 to identify 𝐷test in

E(𝐷test).
To experimentally test the MSE approach, we take the overall

data distribution across all hospitals for a single attribute in one

dimension or a pair of attributes in two dimensions of 2008 HCUP

data as our training distribution 𝐷train and use each hospital from

the 2009 HCUP data for those attributes as a 𝐷test. We use HCUP

2008 domain sizes and exclude HCUP 2009 data which exceed those

domains. For an adversary with only the mean, we take the publicly

available mean from 2008 for each attribute, or we calculate the

mean across all hospitals in 2008 for attributes where the mean is

not reported online. We evaluate an adversary who knows only

a single point in the database with Chicago Crime and Spitz data,

and we choose the known location uniformly from the locations in

each database.

We run experiments on both 1D and 2D databases. We present

our results in one dimension on just HCUP data in Table 3. We

can see that for both the MSE and mean attacks, the reflection is

typically easy to remove. While the attack with a full histogram

outperforms the attack with only the mean, they are both effective.

For smaller domains these approaches do not work as well and

for other domains like admission month (AMONTH), where the

data are fairly uniform, it is harder to accurately determine the

symmetry.

Table 3: Symmetry breaking for 1D range queries.

Attribute D Acc. MSE Acc. 𝜇 # DBs

LOS 366 1.00 1.00 1049

AGEDAY 365 0.91 0.92 645

AGE 125 0.99 0.73 1049

AGE_18_OR_GREATER 107 0.96 0.90 1049

AGE_BELOW_18 18 0.75 0.74 1049

NCH 16 1.00 1.00 1050

NDX 16 0.83 0.68 1050

NPR 16 1.00 1.00 1050

AMONTH 12 0.66 0.66 1000

ZIPINC_QRTL 4 0.72 0.74 1049

We present our two-dimensional results in Table 4. We note that

the joint accuracy has a baseline of 1/8 = 0.125 when there is one

reflectable component. For our HCUP databases the attacks did

much better than the baseline, but were not completely accurate.

For the location data with a single known point, it was possible

to find 𝐷 in E(𝐷) with high probability for Chicago data with

large domains. Denser databases, like the Chicago data with small

domains, and databases with many reflectable components, like the

Spitz dataset, still were significantly better than the baseline but

had worse performance.

Table 4: Symmetry breaking for 2D range queries.

Attributes D Acc.MSE Acc. 𝜇 Acc. 𝑝 # DBs

NCH & NDX 16 × 16 0.743 0.683 N/A 1050

NCH & NPR 16 × 16 0.935 0.927 N/A 1050

NDX & NPR 16 × 16 0.668 0.580 N/A 1050

Chi LAT & LONG 9 N/A N/A 0.364 154

Chi LAT & LONG 19 N/A N/A 0.467 154

Chi LAT & LONG 39 N/A N/A 0.506 154

Chi LAT & LONG 59 N/A N/A 0.571 154

Chi LAT & LONG 99 N/A N/A 0.721 154

Chi LAT & LONG 199 N/A N/A 0.890 154

Chi LAT & LONG 1999 N/A N/A 1.0 154

Spitz LAT & LONG ≤ 677 N/A N/A 0.524 166

8 CONCLUSION AND FUTUREWORK
We have shown that full database reconstruction from responses to

range queries is much more complex in two dimensions than one.

Indeed, going from 1D to 2D, the worst-case number of databases

that produce equivalent leakage jumps from constant to exponen-

tial (in the database size). Despite this limitation, we develop a

poly-time reconstruction algorithm that computes and encodes all

databases with equivalent leakage in poly-space. We implement our

attack and demonstrate that the configurations that lead to a large

number of equivalent databases are present in real data. As new

approaches to search on encrypted databases are being proposed,

our work identifies specific technical challenges to address in the

development of schemes for range search resilient to attacks.

A first direction of followup research is to tighten the bound on

the number of seed databases of the reconstruction. Theorem 4.4

gives a linear bound (in the perimeter of the domain) andwe suspect

one could instead prove a logarithmic bound. Another direction

is to relax the assumptions on the amount of leakage available

to the adversary. Our attack requires complete information and

produces an exact reconstruction. It would be interesting to develop

approximate reconstruction attacks from partial information (e.g., a

subset of all the query responses or just their sizes). Finally, devising

attacks for databases of arbitrary dimension is an important open

problem. It is easy to see that our exponential lower bound on the

size of a family of equivalent databases (Theorem 4.3) extends to

higher dimensions. However, additional techniques may be needed

to extend our reconstruction approach to higher dimensions.

9 ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable comments

and Evgenios Kornaropoulos for providing insights in early stages

of this work. This work was supported in part by NSF grants CNS

1928767 and CNS 1925288, and by the Kanellakis Fellowship at

Brown University.

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

454

REFERENCES
[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.

Order Preserving Encryption for Numeric Data. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data (SIGMOD 2004).

[2] Akshima, David Cash, Francesca Falzon, Adam Rivkin, and Jesse Stern. 2020.

Multidimensional Database Reconstruction from Range Query Access Patterns.

Cryptology ePrint Archive, Report 2020/296. (2020). https://eprint.iacr.org/2020/

296.

[3] Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly

Shmatikov. 2018. The Tao of Inference in Privacy-Protected Databases. Proc.
VLDB Endow. 11, 11 (July 2018), 1715–1728.

[4] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. 2009.

Order-Preserving Symmetric Encryption. In Advances in Cryptology - EURO-
CRYPT 2009.

[5] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-

Preserving Encryption Revisited: Improved Security Analysis and Alternative

Solutions. In Advances in Cryptology – CRYPTO 2011.
[6] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic searchable encryption

in very-large databases: data structures and implementation. In 21st Annual
Network and Distributed System Security Symposium 2014 (NDSS 2014).

[7] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,

and Rasool Jalili. 2018. New Constructions for Forward and Backward Private

Symmetric Searchable Encryption. In Proc. of ACM Conf. on Computer and Com-
munications Security 2018 (CCS 2018).

[8] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled

Disclosure. In Advances in Cryptology – ASIACRYPT 2010.
[9] Ciphercloud. 2020. CipherCloud: Cloud Data Security Company. (2020). http:

//www.ciphercloud.com Accessed on May 3, 2020.

[10] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2011. Searchable

Symmetric Encryption: Improved Definitions and Efficient Constructions. Journal
of Computer Security 19, 5 (2011), 895–934.

[11] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Char-

alampos Papamanthou. 2020. Dynamic Searchable Encryption with Small Client

Storage. In 27th Annual Network and Distributed System Security Symposium 2020
(NDSS 2020).

[12] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and

Saurabh Shintre. 2020. SEAL: Attack Mitigation for Encrypted Databases via

Adjustable Leakage. In 29th USENIX Security Symposium (USENIX Security 20).
[13] F. Betül Durak, Thomas M. DuBuisson, and David Cash. 2016. What Else is

Revealed by Order-Revealing Encryption?. In Proc. ACM Conf. on Computer and
Communications Security 2016 (CCS 2016).

[14] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin

Rosu, and Michael Steiner. 2015. Rich Queries on Encrypted Data: Beyond Exact

Matches. In 20th European Symposium on Research in Computer Security 2015
(ESORICS 2015).

[15] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gadepally, R. Shay,

J. D. Mitchell, and R. K. Cunningham. 2017. SoK: Cryptographically Protected

Database Search. In Proc. IEEE Symposium on Security and Privacy 2017 (S&P
2017).

[16] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016.

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications to Search-

able Encryption. In Advances in Cryptology - CRYPTO 2016.
[17] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,

Rachit Agarwal, and Thomas Ristenpart. 2020. Pancake: Frequency Smoothing

for Encrypted Data Stores. In 29th USENIX Security Symposium (USENIX Security
20).

[18] P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson. 2019. Learning to

Reconstruct: Statistical Learning Theory and Encrypted Database Attacks. In

Proc. IEEE Symp. on Security and Privacy 2019 (S&P 2019).
[19] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.

2018. Pump Up the Volume: Practical Database Reconstruction from Volume

Leakage on Range Queries. In Proc. ACM Conf. on Computer and Communications
Security 2018 (CCS 2018).

[20] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart. 2017.

Leakage-Abuse Attacks against Order-Revealing Encryption. In Proc. IEEE Symp.
on Security and Privacy 2017 (S&P 2017).

[21] Seny Kamara and Tarik Moataz. 2018. SQL on Structurally-Encrypted Databases.

In Advances in Cryptology – ASIACRYPT 2018.
[22] Seny Kamara, Tarik Moataz, Stan Zdonik, and Zheguang Zhao. 2020. An Optimal

Relational Database Encryption Scheme. Cryptology ePrint Archive, Report

2020/274. (2020). https://eprint.iacr.org/2020/274.

[23] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic

Attacks on Secure Outsourced Databases. In Proc. ACM Conf. on Computer and
Communications Security 2016 (CCS 2016).

[24] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2019. Data Recovery on Encrypted Databases With 𝑘-Nearest Neighbor Query

Leakage. In Proc. IEEE Symp. on Security and Privacy 2019 (S&P 2019).
[25] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2020. The State of the Uniform: Attacks on Encrypted Databases Beyond the

Uniform Query Distribution. In Proc. IEEE Symp.on Security and Privacy 2020
(S&P 2020).

[26] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018. Improved

reconstruction attacks on encrypted data using range query leakage. In Proc.
IEEE Symp. on Security and Privacy 2018 (S&P 2018).

[27] Evangelia Anna Markatou and Roberto Tamassia. 2019. Full Database Reconstruc-

tion with Access and Search Pattern Leakage. In Proc. Int. Conf on Information
Security 2019 (ISC 2019).

[28] Evangelia Anna Markatou and Roberto Tamassia. 2019. Mitigation Techniques

for Attacks on 1-Dimensional Databases that Support Range Queries. In Proc. Int.
Conf on Information Security 2019 (ISC 2019).

[29] Evangelia Anna Markatou and Roberto Tamassia. 2020. Database Reconstruction

Attacks in Two Dimensions. Cryptology ePrint Archive, Report 2020/284. (2020).

https://eprint.iacr.org/2020/284.

[30] Charalampos Mavroforakis, Nathan Chenette, Adam O’Neill, George Kollios,

and Ran Canetti. 2015. Modular Order-Preserving Encryption, Revisited. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data (SIGMOD 2015).

[31] Muhammad Naveed, Seny Kamara, and Charles V. Wright. 2015. Inference

Attacks on Property-Preserving Encrypted Databases. In Proc. ACM Conf. on
Computer and Communications Security 2015 (CCS 2015).

[32] Skyhigh Networks. 2020. Skyhigh Networks. (2020). https://www.

skyhighnetworks.com accessed on May 3, 2020.

[33] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran

Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna

Badrinarayanan. 2016. Big Data Analytics over Encrypted Datasets with Seabed.

In 12th USENIX Symposium on Operating Systems Design and Implementation 2016
(OSDI 2016).

[34] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2019. Arx: An Encrypted

Database using Semantically Secure Encryption. Proc. VLDB Endow. 12, 11 (August
2019), 1664–1678.

[35] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-

ishnan. CryptDB: Protecting Confidentiality with Encrypted Query Processing.

In Proc. of the Twenty-Third ACM Symposium on Operating Systems Principles
2011 (SOSP ’11).

[36] Malte Spitz. 2011. CRAWDAD dataset spitz/cellular (v. 2011-05-04). Downloaded

from https://crawdad.org/spitz/cellular/20110504. (May 2011).

[37] Boyang Wang, Yantian Hou, Ming Li, Haitao Wang, and Hui Li. 2014. Maple:

Scalable Multi-Dimensional Range Search over Encrypted Cloud Data with Tree-

Based Index. In Proc. of the 9th ACM Symposium on Information, Computer and
Communications Security (ASIA CCS ’14).

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

455

https://eprint.iacr.org/2020/296
https://eprint.iacr.org/2020/296
http://www.ciphercloud.com
http://www.ciphercloud.com
https://eprint.iacr.org/2020/274
https://eprint.iacr.org/2020/284
https://www.skyhighnetworks.com
https://www.skyhighnetworks.com

A PSEUDOCODE
A.1 Pseudocode of Algorithm 4

Algorithm 4: Solve(Segmentations,RM(𝐷))
1: Initialize lists Extremes, and Solutions
2: Initialize hashmap Rho
3: for 𝐻 ∈ PosConfigs do
4: Let ID1 = 𝐻 [left] and ID2 = 𝐻 [right]
5: for all record ID ∈ 𝐷 do
6: Let𝑚 be the number of responses in RM(𝐷) containing ID

7: Let𝑚1 be the number of responses in RM(𝐷) containing ID1, ID

8: Let𝑚2 be the number of responses in RM(𝐷) containing ID2, ID

9: Let Rho[ID] =𝑚, Rho[(ID1, ID)] =𝑚1, Rho[(ID2, ID)] =𝑚2.

10:

11: // First, find all possible solutions for extreme points.

12: for all ((ID1, ID2), (𝑆1, 𝑆2, 𝑆3)) ∈ Segmentations do
13: Initialize list 𝐿.

14: for left
0
= 1, . . . , 𝑁0 do

15: Compute solutions left′
1
, left′′

1
of Eq. 7, 𝛽 = left

0
, 𝛼 = Rho[ID1].

16: if left′
1
∈ D then add (left

0
, left′

1
) to 𝐿.

17: if left′′
1
∈ D then add (left

0
, left′′

1
) to 𝐿.

18: for left
1
= 1, . . . , 𝑁1 do

19: Compute solutions left′
0
, left′′

0
of Eq. 8, 𝛾 = left

1
, 𝛼 = Rho[ID2].

20: if left′
0
∈ D then add (left′

0
, left

1
) to 𝐿.

21: if left′′
0
∈ D then add (left′′

0
, left

1
) to 𝐿.

22: for all left ∈ 𝐿 do
23: Compute solutions right′ and right′′ using System (11) with

𝛼 = Rho[ID2], 𝛽 = Rho[(ID1, ID2)], and 𝑣 = left.
24: if right′ ∈ D then add ((ID1, ID2), (left, right′), (𝑆1, 𝑆2, 𝑆3)) to

Extremes.
25: if right′′ ∈ D then add ((ID1, ID2), (left, right′′), (𝑆1, 𝑆2, 𝑆3)) to

Extremes.
26:

27: // Now find at most two solutions for all other points.

28: for all ((ID1, ID2), (left, right), (𝑆1, 𝑆2, 𝑆3)) ∈ Extremes do
29: Initialize hashmap 𝐻 .

30: for all ID ∈ 𝑆1 do
31: Compute solution 𝑎𝑛𝑠 to System (13) with 𝛽 = Rho[(ID1, ID)],

𝛾 = Rho[(ID2, ID)], 𝑣 = left, 𝑤 = right.
32: if 𝑎𝑛𝑠 ∉ D then go to line 28.

33: else Let 𝐻 [ID2] = {𝑎𝑛𝑠 }.
34: for all ID ∈ 𝑆2 do
35: Compute solutions 𝑎𝑛𝑠, 𝑎𝑛𝑠′ using System (11) with 𝛼 = Rho[ID],

𝛽 = Rho[(ID1, ID)], and 𝑣 = left.
36: if 𝑎𝑛𝑠 ∈ D then Let 𝐻 [ID] = {𝑎𝑛𝑠 }.
37: if 𝑎𝑛𝑠′ ∈ D then Let 𝐻 [ID] = 𝐻 [ID] ∪ {𝑎𝑛𝑠′ }.
38: if (𝑎𝑛𝑠, 𝑎𝑛𝑠′) ∉ D2 then go to line 28.

39: for all ID ∈ 𝑆3 do
40: Compute solution 𝑎𝑛𝑠 to System (14) with 𝛽 = Rho[(ID1, ID)],

𝛾 = Rho[(ID2, ID)], 𝑣 = left, 𝑤 = right.
41: if 𝑎𝑛𝑠 ∉ D then go to line 28.

42: Let 𝐻 [ID] = {𝑎𝑛𝑠 }.
43: Add 𝐻 to Solutions.
44: return Solutions.

A.2 Pseudocode of Algorithm 5

Algorithm 5: Partition(𝐷)
1: Partition = [] { list of components of database 𝐷 }

2: Projections = [] { list of projections of points on main diagonal }

3: Let𝑀 be an empty hashmap { maps projections to IDs }

4: for all ID ∈ 𝐷 do
5: 𝑝 = 𝐷 [ID]
6: Add low (𝑝) and high(𝑝) to Projections
7: Add ID to𝑀 [low (𝑝)]; Add ID to𝑀 [high(𝑝)]
8: Component = ∅ { set of IDs of points of current component }

9: SeenOnce = ∅ { set of IDs of points of current component for which

only one projection has been seen }

10: Sort list Projections by ascending order.

11: for all 𝑝 ∈ Projections do
12: Order the items ID ∈ 𝑀 [𝑝] as follows:
13: first, all ID such that high(ID) = 𝑝 ≠ low (ID) ,;
14: next, all ID such that high(ID) = 𝑝 = low (ID) ;
15: finally, all ID such that high(ID) ≠ 𝑝 = low (ID) ;
16: within each group, order by ID value.

17: for all ID ∈ 𝑀 [𝑝] do
18: if ID ∈ SeenOnce then
19: Remove ID from SeenOnce
20: if SeenOnce = ∅ then
21: if Component contains a nonreflectable point or a single

diagonal point then
22: refl = false
23: else
24: refl = true
25: Add (Component, refl) to Partition
26: Set Component = ∅
27: else
28: Add ID to SeenOnce and to Component
29: return Partition

B PROOFS
B.1 Proof of Lemma 4.1

Proof. Suppose 𝑃1 and 𝑃2 are two distinct partitions of a data-

base into components. Then, their components can be ordered by

domination, going from bottom to top along the diagonal. Let 𝐶1

and 𝐶2 be the first components of 𝑃1 and 𝑃2 that differ. Thus for

every 𝑝 ∈ 𝐶1 and 𝑞 not in 𝐶1 or an earlier component, 𝑝 and 𝜎 (𝑝)
are dominated by 𝑞. The same holds for 𝐶2.

Assume without loss of generality that there is point 𝑝 ∈ 𝐶1

such that 𝑝 ∉ 𝐶2. If𝐶2 is not a subset of𝐶1, then there is some point

𝑞 ∈ 𝐶2 and 𝑞 ∉ 𝐶1. Partition 𝑃1 indicates that 𝑝, 𝜎 (𝑝) ⪯ 𝑞 (since 𝑞

is not in an earlier component or in 𝐶1), and partition 𝑃2 similarly

indicates that 𝑞, 𝜎 (𝑞) ⪯ 𝑝 . These imply 𝑝 = 𝑞, a contradiction. If 𝐶2

is a strict subset of 𝐶1, then it contradicts the minimality of 𝐶1, as

it is a smaller component contained in 𝐶1. Thus 𝐶1 = 𝐶2, and the

partitions must be the same. □

B.2 Proof of Lemma 4.2
Proof. We give here the proof for the case when 𝐷 is over a

square domain, i.e., a domain D = [𝑁0] × [𝑁1] such that 𝑁0 = 𝑁1.

This case is easier to deal with since the reflection of every point

of D is also in D. The proof for a general domain has a similar

structure but involves additional details.

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

456

We show that 𝐷 and 𝐷 ′
are equivalent by defining a one-to-one

mapping between queries on 𝐷 and queries on 𝐷 ′
such that queries

mapped to each other have the same response. Namely, given a

query 𝑞 for𝐷 with access response Resp(𝐷,𝑞), we generate a query
𝑞′ for 𝐷 ′

, such that Resp(𝐷,𝑞) = Resp(𝐷 ′, 𝑞′).
Let 𝐵 the union of the components of 𝐷 preceding 𝐶 on the

diagonal. Also, let𝐴 be the union of the components of 𝐷 following

𝐶 on the diagonal. We have that 𝐷 ′
consists of 𝐵 followed by 𝐶 ′

,

followed by 𝐴 (see Figure 8). We consider five cases:

(1) Resp(𝐷,𝑞) contains no points in𝐶 : We map query 𝑞 to itself

as 𝐷 and 𝐷 ′
are identical but for the points in 𝐶 .

(2) Resp(𝐷,𝑞) contains only points in 𝐶: We map query 𝑞 =

(𝑐, 𝑑) to 𝑞′ = (𝜎 (𝑐), 𝜎 (𝑑)). We have that if 𝑐 ⪯ 𝑝 ⪯ 𝑑 , then

𝜎 (𝑐) ⪯ 𝜎 (𝑝) ⪯ 𝜎 (𝑑). Thus, Resp(𝐷,𝑞) = Resp(𝐷 ′, 𝑞′).
(3) Resp(𝐷,𝑞) has points in 𝐵 and𝐶 but not in𝐴. We map query

𝑞 = (𝑐, 𝑒) to 𝑞′ = (𝑐, 𝑒 ′), where 𝑒 ′ = 𝜎 (𝑒) (see Figure 8). Let
range (𝑐, 𝑓) be the intersection of ranges (𝑐, 𝑒) and (𝑐, 𝑒 ′).
Also, let ranges (𝑑, 𝑒) and (𝑑 ′, 𝑒 ′) be the remaining parts of

(𝑐, 𝑒) and (𝑐, 𝑒 ′), respectively. Since the reflections of the

points of 𝐶 in (𝑐, 𝑓) are also in (𝑐, 𝑓), we have that (𝑐, 𝑓)
contains the same points of 𝐶 and 𝐶 ′

. Consider now the

points of𝐶 in (𝑑, 𝑒). This is the scenario of Case 2 above and
thus we have that these points are the same as the points of

𝐶 ′
in (𝑑, 𝑒 ′). We conclude that Resp(𝐷,𝑞) = Resp(𝐷 ′, 𝑞′).

(4) Resp(𝐷,𝑞) has points in 𝐴 and 𝐶 but not in 𝐵. This case is

symmetric to Case 3 and can be proved similarly.

(5) Resp(𝐷,𝑞) contains points in 𝐴 and 𝐵. Here, all points of 𝐶

and𝐶 ′
are contained in Resp(𝐷,𝑞). Thus, we map 𝑞 to itself.

We can similarly show that given a query 𝑞′ for 𝐷 ′
, we can gen-

erate query 𝑞 for 𝐷 , such that Resp(𝐷 ′, 𝑞′) = Resp(𝐷,𝑞). Also,
this mapping is the inverse of the previous one. It follows that

RM(𝐷) = RM(𝐷 ′) and thus 𝐷 and 𝐷 ′
are equivalent. □

B.3 Proof of Theorem 4.4
Proof. Fix a database 𝐷 ∈ D𝑅

. We start by observing that 𝐷

contains a set {left, right, bot, top} of 2 to 4 extreme points that

achieve the minimum and maximum each dimension (see Figure 9).

By reflecting 𝐷 vertically and/or horizontally (operations which

preserve equivalence), we may assume that right dominates left.
In any database that is equivalent to 𝐷 , the extreme points must

have the same query densities as in 𝐷 . One of these four extreme

points must achieve minimal value in the first coordinate. For each

of those choices, by Lemma 3.4, there are 2(𝑁0 + 𝑁1) solutions
for left that appear in an equivalent database. For each of these

solutions, by the first part of Lemma 3.5, there are at most two

solutions for right (using the assumption that left ⪯ right). Thus
there are at most 𝑂 (𝑁0 + 𝑁1) possible values for left and right in
any equivalent database with left ⪯ right.

For each of these possible solutions for left, right, there may or

may not exist a database 𝐷 ′
that has extreme points set to those

solutions and is equivalent to 𝐷 . If there is none, we discard those

solutions. Otherwise, we take 𝐷 ′
to be any such database and add

it to S. As above, we have assumed that left is dominated by right
in 𝐷 ′

.

We now argue that any database �̂� that is (1) equivalent to 𝐷

(and hence𝐷 ′
) and (2) has the same left, right as𝐷 ′

, can be obtained

from 𝐷 ′
by diagonally reflecting components of 𝐷 ′

. By Lemma 4.2,

all of the databases obtained in this way will be equivalent to 𝐷 ′
,

so this will prove the theorem.

Every point in �̂� lies in the regions 𝑆1, 𝑆2, or 𝑆3 depicted in

Figure 10, and moreover must lie in the same region as it does

in 𝐷 ′
(otherwise �̂� is not equivalent). Any point of �̂� in 𝑆1 or 𝑆3

uniquely determined by query densities in 𝐷 ′
, by the second part

of Lemma 3.5 (taking 𝑣 = left,𝑤 = right and 𝑥 as the unknown

point in 𝑆1 or 𝑆3, and applying the two versions of the second part

to 𝑆1 and 𝑆3 respectively). Moreover, by the first part of Lemma 3.5,

every point in 𝑆2 is determined up to reflection by 𝜎 , and one of

those solutions must be the corresponding point in 𝐷 ′
(this takes

𝑣 = left in the lemma).

We next observe that in �̂� , how the points are divided into the

components is the same as in 𝐷 ′
, even though the points in 𝑆2

may not be uniquely determined. This is because reflecting any

point of a database by 𝜎 does not change which points are in which

components.

Finally, we show that �̂� can be obtained by reflecting components

of 𝐷 ′
contained in 𝑆2. Fix a component 𝐶 of �̂� , and order its non-

diagonal points 𝑢1, 𝑢2, . . . , 𝑢𝑘 by their low projections onto the

diagonal (the diagonal points automatically match because they

only have one solution). Let 𝑢 ′
1
, . . . , 𝑢 ′

𝑘
be the corresponding points

of𝐷 ′
. The point𝑢 ′

1
is reflectable since𝐶 is reflectable. We also know

that 𝑢 ′
1
does not lie on the diagonal, because otherwise 𝑢 ′

1
could

be removed from 𝐶 to form a smaller component, contradicting

the minimality in the definition of 𝐶 (further points may however

lie on the diagonal). Since 𝑢1 was determined up to reflection, it

is either 𝑢 ′
1
or 𝜎 (𝑢 ′

1
), which are distinct. If 𝑢1 = 𝑢 ′

1
, we claim the

entire component of �̂� matches the component in 𝐷 ′
(𝑢𝑖 = 𝑢 ′

𝑖
for

all 𝑖). Otherwise, we claim that 𝑢𝑖 = 𝜎 (𝑢 ′
𝑖
) for all 𝑖 .

Now suppose 𝑢1 = 𝑢 ′
1
; the case 𝑢1 = 𝜎 (𝑢 ′

1
) is similar. We claim

that 𝑢2 = 𝑢 ′
2
. The key observation is that, by our ordering of the

points, 𝑢 ′
1
and 𝑢 ′

2
must fall into one of the following relationships:

• 𝑢 ′
1
⪯ 𝑢 ′

2
and 𝑢 ′

1
⪯ 𝜎 (𝑢 ′

2
)

• 𝑢 ′
1
⪯ 𝑢 ′

2
and 𝑢 ′

1
⪯𝑎 𝜎 (𝑢 ′

2
)

• 𝑢 ′
1
⪯𝑎 𝑢 ′

2
and 𝑢 ′

1
⪯ 𝜎 (𝑢 ′

2
)

• 𝑢 ′
1
⪯𝑎 𝑢 ′

2
and 𝑢 ′

1
⪯𝑎 𝜎 (𝑢 ′

2
).

The first case cannot happen, because then 𝑢 ′
1
could be removed

from the component, contradicting minimality. (If 𝑢 ′
1
dominates

both of these points, then it also dominates 𝑢 ′
𝑖
, 𝜎 (𝑢 ′

𝑖
) for all 𝑖).

We next address the second case, and claim that 𝑢2 must equal

𝑢 ′
2
in order for �̂� to be equivalent to 𝐷 ′

. (The third case is similar.)

If 𝑢2 were equal to 𝜎 (𝑢 ′
2
) instead of, then there would exist a query

over �̂� containing left and 𝑢2 and not 𝑢1. But in 𝐷 ′
all queries

containing left and 𝑢 ′
2
also contain 𝑢 ′

1
, so the databases would not

be equivalent.

Finally, in the fourth case, we have 𝑢 ′
1
⪯𝑎 𝑢 ′

2
, so by Lemma 3.5

(with 𝑤 = left, 𝑥 = 𝑢 ′
1
), 𝑢 ′

2
is uniquely determined, and we must

have 𝑢2 = 𝑢 ′
2
in order for the databases to be equivalent.

This shows that 𝑢2 = 𝑢 ′
2
. We can continue the argument for the

rest of the 𝑢𝑖 . In place of 𝑢 ′
1
, we find some 𝑢 ′

𝑗
(𝑗 < 𝑖) that is related

in one of the latter three above ways to 𝑢 ′
𝑖
that 𝑢 ′

1
was related to

𝑢 ′
2
. Such an 𝑗 must exist, because otherwise we would have that

𝑢 ′
𝑗
⪯ 𝑢 ′

𝑖
, 𝑢 ′

𝑗
⪯ 𝑢 ′

𝑖
for all 𝑗 < 𝑖 , and we could remove 𝑢 ′

𝑖
and the

subsequent points to form a smaller component. (Note that 𝑗 might

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

457

not be 𝑖 − 1.) This completes the claim that the component either

matches or is entirely reflected. This argument also shows that non-

reflectable components of 𝐷 ′
must be equal in �̂� . This completes

the proof. □

B.4 Proof of Lemma 5.1
Proof. First we argue that after line 5 the set Edges must con-

tain the extreme points. The second largest query in RM(𝐷) must

exclude at least one extreme point 𝑝 . Suppose for a contradiction

that 𝑝 is not extreme, then we could extend the query to include 𝑝

which would thus result in a strictly larger query that still doesn’t

contain all records. Now consider the second largest query that

contains 𝑝 . Once again, the remaining point(s) must be extreme in

another direction. If not, then we could extend that query to include

the non-extreme point, which would result in a strictly larger query

that is not the whole database. Since we repeat this four times, each

time ensuring that the previously recovered extreme points are

included in the second largest query, then we are able to recover

all extreme points (not necessarily a minimal set).

The loop on line 7 then checks if there are any potential corner

points. Note that any set of IDs in 𝐿 − 𝑆𝑖 (for 𝑖 = 1, . . . , 4) added

to Edges must correspond to points with the same value in the

extreme dimension and different values in the other. If there is only

one point in this set, then we must add it to PosExtremes.
Else, we need to locate any possible corners on this edge. For

example, in case (2), we only ever see three edges of the database,

but we still need a point on each of the four edges. In order to do

so with only three edges, we need to locate the corners.

To find potential corners, if there are multiple IDs in this edge

we select the points that only appear in one set in RM(𝐷) that is
of size 2 and restricted to points in that edge. Note that any point

that is a corner must satisfy this condition. At the end of this for

loop, PosExtremes will therefore contain any corner points.

Lastly, we will show that a subset S ⊆ [𝑅] is a valid set of ex-

treme point identifiers iff the minimal query that contains those

pointsmust also contain thewhole database. Let left, right, bot, top ∈
𝐷 be the set of extreme points (not necessarily unique) that achieve

minimum and maximum values in the first and second coordinates,

respectively. Then for all 𝑝 ∈ 𝐷 , we have left
0
≤ 𝑝0 ≤ right

0
and

bot1 ≤ 𝑝1 ≤ top
1
. Let 𝑞 = ((left

0
, bot1), (right0, top1)) . Then, by

definition, the query 𝑞 returns all 𝑝 ∈ 𝐷 such that

(left
0
, bot1) ⪯ 𝑝 ⪯ (right

0
, top

1
)

i.e. all of 𝐷 . For the backward direction, suppose that the minimal

query containing left, right, bot, top ∈ 𝐷 also contains the whole

database. Suppose for a contradiction that one of these points is

not extreme and so there exists, WLOG, 𝑝 ∈ 𝐷 be such that

𝑝0 < min(left
0
, right

0
, bot0, top0).

But that means that (left
0
, bot1) ⪯̸ 𝑝 and hence 𝑝 cannot be in the

minimal query containing those four points, which is a contradic-

tion. Hence an element of {left
0
, right

0
, bot0, top0} must achieve

the minimal value along the first coordinate. A similar argument

can be made for the other extremes.

Searching through RS(𝐷) to find the second largest queries in

lines 1 to 5 will take time𝑂 (RS(𝐷)). In the worst case, |Edges| = 𝑅

and then finding a set satisfying the else statement takes time

𝑂 (|RS(𝐷) |). Thus, the for loop on line 7, takes 𝑂 (𝑅 |RS(𝐷) |) time.

Since PosExtremes only contains points that are singular in an edge
or potential corners, then |PosExtremes| ≤ 8, which implies that the

for loops on lines 12 and 13 exhibit a constant number of iterations.

Checking that 𝐿 is the only set in RS(𝐷) containing 𝐸 can be done

with a number of element membership searches linear in |RS(𝐷) |.
Also, checking all possible configurations contributes a constant

factor. Hence, overall Algorithm 1 runs in time 𝑂 (𝑅 |RS(𝐷) |) =

𝑂 (min(𝑅5, 𝑅𝑁 2)) . □

B.5 Proof of Lemma 5.2
Proof. Note that for all 𝑝 ∈ 𝐷 , left

0
≤ 𝑝0 ≤ right

0
and bot1 ≤

𝑝1 ≤ top
1
. By definition, a query 𝑞 = (𝑐, 𝑑) returns all points 𝑝 such

that 𝑐 ⪯ 𝑝 ⪯ 𝑑 . Moreover, the smallest query containing two points

is the query defined by those two points.

𝑆2 is computed to be the smallest set in RM(𝐷) containing left
and right. Query 𝑞 = (left, right) must return all points 𝑝 ∈ 𝐷 such

that left ⪯ 𝑝 ⪯ right, which precisely corresponds to all points of

𝐷 vertically in between left and right, as desired.
𝑆1 is defined as 𝑇 − 𝑆2, where 𝑇 is the smallest set in RS(𝐷)

containing top, left and right. In particular, 𝑇 contains all points

corresponds to the query 𝑞 = (left, (right
0
, top

1
)) i.e. all 𝑝 ∈ 𝐷

such that left ⪯ 𝑝 ⪯ (right
0
, top

1
). In particular,𝑇 = 𝑆1 ∪ 𝑆2 and so

𝑆1 = 𝑇−𝑆2. Moreover,𝐷 = 𝑆1∪𝑆2∪𝑆3, thus 𝑆3 = 𝐷−𝑇 = 𝐷−(𝑆1∪𝑆2).
The correctness of the segments follows.

The for loop on line 2 runs through a constant number of itera-

tions, as there is a constant number of possible configurations for

the extreme points. Finding the smallest sets in lines 3 and 4 is linear

in 𝑅 |RS(𝐷) |. Steps 5 and 6 are linear in the sizes of the sets, which

is𝑂 (𝑅). The total runtime is𝑂 (𝑅 |RS(𝐷) | + 𝑅) = 𝑂 (min(𝑅5, 𝑅𝑁 2)).
□

B.6 Proof of Lemma 5.3
Proof. By Lemma 5.1 we know that Algorithm 1 correctly out-

puts the configurations of the extreme points, PosConfigs. The for
loop on line 3 iterates through each hashmap in PosConfigs, comput-

ing the necessary query densities and storing them in a hashmap

Rho which maps IDs to their corresponding query densities. The

correctness of these values follows from the definition of the query

density equations. For each configuration in PosConfigs, the seg-
ments are then computed and output as Segmentations. In lines 12

to 25, Algorithm 4 iterates through Segmentations and computes

the at most 4(𝑁0 + 𝑁1) possible values of left and right. The cor-
rectness of this step follows from Lemma 3.4. By Lemma 3.5 we

can then solve each remaining point up to two values. Let �̂� be an

equivalent database to 𝐷 . Any 𝑝 ∈ �̂� in Segment 𝑆2, 𝑆1 or 𝑆3, must

be consistent with either Systems (11), (13), or (14), respectively.

Since Algorithm 4 evaluates the possible values for each point in

the database given each pair of extreme points in Segmentations,
then for any equivalent �̂� there exists some 𝐻 ∈ Solutions such
that for all identifiers ID ∈ [𝑅], we have that �̂� [ID] ∈ 𝐻 [ID].

Computing the necessary query density functions takes time

𝑂 (𝑅𝑁 2). The loop on line 12 iterates a constant number of times

and the three nested for loops iterate 𝑂 (𝑁0 + 𝑁1) times. Checking

that some element is in the domain and then adding it to a list takes

time 𝑂 (1).

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

458

The loop starting at line 28 iterates through a list of size𝑂 (𝑁0 +
𝑁1). The three inner for loops run through all points in 𝑆1, 𝑆2, and

𝑆3 which is at most 𝑅 iterations. Initializing a hash map, evaluating

all possible values, checking and then adding an element all take

constant time. Thus, the total runtime of this part of the algorithm

is 𝑂 (𝑅(𝑁0 + 𝑁1)), which yields an overall runtime of 𝑂 (𝑅𝑁 2). □

B.7 Proof of Lemma 5.4
Proof. By Lemma 4.1 we know that database 𝐷 has a unique

partition. We shall show that Algorithm 5 returns the valid partition

𝑃 of the database. A partition 𝑃 is invalid if any of these statements

holds: (1) 𝑃 does not contain all points in the database, (2) 𝑃 con-

tains a component which violates the dominance ordering of the

definition or (3) 𝑃 contains a non-minimal component.

(1) 𝑃 must contain all identifiers of 𝐷 . Each identifier of 𝐷 will

end up in some component of the partition, when the al-

gorithm eventually processes its projections and adds it to

some component.

(2) Suppose 𝐶𝑏𝑎𝑑 is a component which contains some point 𝑝 ,

such that 𝑝 dominates some point 𝑞 ∉ 𝐶𝑏𝑎𝑑 , but 𝜎 (𝑝) does
not dominate 𝑞. Since 𝑞 ∉ 𝐶𝑏𝑎𝑑 , that means that high(𝑞),
low(𝑞) ⪯ high(𝑝), low(𝑝), as the algorithm traverses the

projections in order of dominance and from low to high.

However, that implies that 𝑞 ⪯ 𝜎 (𝑝), which leads to a con-

tradiction. (The proof is similar for any of the four possible

violations of the dominance order.)

(3) Suppose𝐶𝑏𝑎𝑑 is a non-minimal component. This means that

there exists some subset of points 𝑆 ⊂ 𝐶𝑏𝑎𝑑 , such that all

points 𝑝, 𝜎 (𝑝), where 𝑝 ∈ 𝑆 dominate all points 𝑞, 𝜎 (𝑞) such
that 𝑞 ∈ 𝐶𝑏𝑎𝑑 − 𝑆 . If that is the case then, for all pairs 𝑝, 𝑞,

where 𝑝 ∈ 𝑆, 𝑞 ∈ 𝐶𝑏𝑎𝑑 − 𝑆 we have low(𝑞) ⪯ high(𝑞) ⪯
low(𝑝) ⪯ high(𝑝). In this case, Algorithm 5 would have

traversed through all the projections (low and high) of points

in 𝐶𝑏𝑎𝑑 − 𝑆 and created a component for them. Thus, 𝐶𝑏𝑎𝑑
would not have been created.

We conclude that Algorithm 5 returns a valid partition of the data-

base identifiers. Regarding the running time, generating projec-

tions takes 𝑂 (𝑅) time and sorting them takes either 𝑂 (𝑅 log𝑅) or
𝑂 (min(𝑅 + 𝑁0, 𝑅 + 𝑁1)) time depending on whether merge sort or

bucket sort is used, respectively. The components are then gener-

ated traversing up the diagonal and doing𝑂 (1) work per projection.
Thus, Algorithm 5 takes 𝑂 (min(𝑅 log𝑅, 𝑅 + 𝑁0, 𝑅 + 𝑁1)) time.

□

B.8 Proof of Theorem 5.5
Proof. Line 35 of Algorithm 3 makes sure that we only return

databases that are equivalent to 𝐷 . It remains to show that we

return all equivalent databases.

We know from Theorem 4.4 that there are at most 𝑂 (𝑁0 + 𝑁1)
database families in E(𝐷), each originating from the possible con-

figurations/locations of the extreme points of the database. Each

family of databases can be produced using any of its members by

reflecting all subsets of reflectable components and then applying

the rigid motions of the square.

Thus, we need to show that (1) we find all possible families, (2)

we identify all reflectable components of that family, and (3) we

produce a database that belongs in each family.

(1) By Lemma 5.1 we can identify the extreme points and all

their possible configurations. Lemmas 3.4 and 3.5 imply that

we can identify at most 4(𝑁0 +𝑁1) solutions for the relevant
extreme points of each configuration. Since there are 2, 3,

or 4 extreme points, there is a constant number of possible

configurations for them. Thus, we can identify 𝑂 (𝑁0 + 𝑁1)
database families.

(2) Given the solutions for two extreme points, by Lemma 5.3

and Lemma 3.5 we can identify one or two solutions per

identifier. Then, by Lemma 5.4 we can identify all reflectable

(and non-reflectable) components. Note that the components

remain the same even after applying the rigid motions of

the square on a database.

(3) It remains to show that we can produce a database that

belongs to the above family. We know one to two solutions

per point and its partition. Each component of the partition

has one to two configurations. We shall show that if we fix

one (non-diagonal) point in the component, it reduces all

other points’ possible locations to one.

Each point uniquely belongs some component 𝐶 . For each

point 𝑝 ∈ 𝐶 , there exists some point 𝑝 ′ such that the boxes

created by (low(𝑝), high(𝑝)) and (low(𝑝 ′), high(𝑝 ′)) inter-
sect. Thus, we can walk up the diagonal on the points’ pro-

jections, and create a graph𝐺 , with nodes the (non-diagonal)

points and an edge between two points whose projection

boxes intersect.

We show that if a point 𝑟 has one possible location, it reduces

each of its neighbors 𝑢 in 𝐺 to one possible location consis-

tent with the leakage. Let𝑚 be the number of different sets

in RM(𝐷) that contain both 𝑢 and 𝑟 . We have two cases:

(a) The boxes intersect : As an example from Figure 12, see 𝑢

and 𝑟 . WLOG, say that𝑢 dominates 𝑟 , and 𝑟 anti-dominates

𝜎 (𝑢). (The proof follows similarly when swapping 𝑟 and

𝑢.) So, low(𝑟) ⪯ low(𝑢) ⪯ high(𝑟) ⪯ high(𝑢).
We have that𝑚 = 𝑟0 (𝑁0 + 1−𝑢0)𝑟1 (𝑁1 + 1−𝑢1). We write

down the relevant 𝜌 equations, and show that at least one

of them is not equal to𝑚, allowing us to trim down the

invalid solution.

𝜌𝑢,𝑟 = 𝑟0 (𝑁0 + 1 − 𝑢0)𝑟1 (𝑁1 + 1 − 𝑢1)
𝜌𝜎 (𝑢),𝑟 = 𝑟0 (𝑁0 + 1 − 𝑢 ′

0
)𝑢 ′

1
(𝑁1 + 1 − 𝑟1)

Suppose 𝜌𝑢,𝑟 = 𝜌𝜎 (𝑢),𝑟 , then 𝑢0 = 𝑟1
𝑁0+1
𝑁1+1 . Thus, 𝑢

′
1
=

𝑢0
𝑁1+1
𝑁0+1 = 𝑟1. This means that both 𝑢 and 𝜎 (𝑢) dominate

𝑟 . Thus, the boxes could not intersect, and 𝜌𝑢,𝑟 ≠ 𝜌𝜎 (𝑢),𝑟 .
(b) Point 𝑟 ’s box contains the other: As an example from Fig-

ure 12, 𝑢 could be the green point, while 𝑟 is the blue.

WLOG, say that 𝑟 anti-dominates both 𝑢 and 𝜎 (𝑢). (The
proof follows similarly in case 𝑢 dominates 𝑟 and 𝜎 (𝑟).)
So, (low(𝑟) ⪯ low(𝑢) ⪯ high(𝑢) ⪯ high(𝑟). Again,𝑚 =

𝑟0 (𝑁0−𝑢0)𝑢1 (𝑁1−𝑟1). We can write down the 𝜌 equations

𝜌𝑢,𝑟 = 𝑟0 (𝑁0 + 1 − 𝑢0)𝑢1 (𝑁1 + 1 − 𝑟1)
𝜌𝜎 (𝑢),𝑟 = 𝑟0 (𝑁0 + 1 − 𝑢 ′

0
)𝑢 ′

1
(𝑁1 + 1 − 𝑟1)

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

459

Setting 𝜌𝑢,𝑟 = 𝜌𝜎 (𝑢),𝑟 , we get that 𝑢1 = 𝑢0
𝑁1+1
𝑁0+1 . That

means that 𝑢 is on the diagonal. This is a contradiction as

graph 𝐺 contains no points on the diagonal.

Thus, given one fixed point, we can traverse𝐺 and determine

the location of every other point. Doing so for all components

gives us the family of databases.

First, Algorithm 3 needs to preprocess the leakage, which takes

𝑂 (𝑅𝑁 2) time. Algorithm 3 runs Algorithms 1, 2 and 4. This takes

𝑂 (𝑅𝑁 2+min(𝑅5, 𝑅𝑁 2)) = 𝑂 (𝑅𝑁 2). Then, for each database family,

we run Algorithm 5 which takes 𝑂 (min(𝑅 log𝑅, 𝑅 + 𝑁0, 𝑅 + 𝑁1))
time. We then generate and traverse𝐺 , which takes𝑂 (𝑅 log𝑅) time.

Note that on each step of the traversal, we need to calculate a query

density function. But we could preprocess those in 𝑂 (𝑅𝑁 2). Note
that it suffices to calculate only two query density functions per

record. Finally, for each candidate family of databases, we generate

a member 𝐷 ′
and check if its response set matches RM(𝐷). It takes

𝑂 (𝑅𝑁 2) for each family to calculate and check the response set and

there are at most 𝑂 (𝑁0 + 𝑁1) such families.

Thus, by Lemmas 5.1, 5.2, 5.3, and 5.4, we have that Algorithm 3

achieves FDR and runs in time𝑂 (𝑅𝑁 2 + (𝑁0 +𝑁1) (min(𝑅 log𝑅, 𝑅 +
𝑁0, 𝑅+𝑁1) +𝑅 log𝑅+𝑅𝑁 2)), which is𝑂 ((𝑁0+𝑁1) (𝑅𝑁 2+𝑅 log𝑅)).

□

C SUPPLEMENTARY CONTENT FOR
EXPERIMENTS

Each year of HCUP data contains a sample of inpatient medical

records in the United States. 2004, 2008, and 2009 include data from

1004, 1056, and 1050 hospitals and 8004571, 8158381, and 7810762

records respectively. The NIS is the largest longitudinal hospital

care collection in the United States and contains many attributes

for each record. We only use a small subset of attributes which

were used by prior works and come from the Core data file for our

analysis. Like KKNO, we divide the age domain into two attributes

for minors and adults.

While the Agency for Healthcare Research and Quality (AHRQ)

provides hospitals with a format and domain for each attribute,

many hospitals do not follow the AHRQ guidelines in practice. We

use the AHRQ formats for our domain sizes and omit data which

do not lie within the domain. We attempt to choose attributes

with a variety of data distributions. Also, we avoid pairs of at-

tributes which do not logically make sense to compare (e.g. AGE

by AGE_BELOW_18). HCUP attributes are described in Table 5.

Attributes Description D 2004 D 2008 D 2009

AGE Age in years 91 91 91

AGEDAY Age in days 365 365 365

AGE<18 Age < 18 18 18 18

AGE≥18 Age ≥ 18 73 73 73

LOS Length of stay 366 365 365

AMONTH Admission month 12 12 12

NCH # chronic conditions N/A 16 26

NDX # diagnoses 16 16 26

NPR # procedures 16 16 26

ZIPINC Zip code income quartile 4 4 4

Table 5: HCUP attributes

Chicago was re-districted in 2012, so we only use the 22 districts

from years after 2012. The minimum number of crimes in a district

across all years was 4162 and the maximum was 22434. The Spitz

data contain locations with beginning dates from 166 different

days between 8/31/2009 and 2/21/2010. Therefore, we use seven

years of Chicago crime data with 22 districts and 7 domains and

166 days of Spitz, leading to a total of 1244 location datasets. The

minimum number of phone record locations for a day was 18 and

the maximum was 502.

We scale Chicago longitudes to be proportional to the ratio of

longitude to latitude in that district to better represent the geomet-

ric shapes of the districts. For a chosen latitude domain 𝑁0, the

minimum longitude domain for a district was typically around
𝑁0

5

and the maximum around 3.6𝑁0.

Session 2B: Applied Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

460

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Prior and related work

	2 Preliminaries
	3 Technical Tools and Overview
	3.1 Query Densities
	3.2 Technical Overview

	4 Classifying Equivalent Databases
	5 Full Database Reconstruction
	5.1 Overview of the attack
	5.2 Preprocessing
	5.3 Get extremes
	5.4 Segment the database
	5.5 Find candidate locations
	5.6 Partition a database into components
	5.7 Prune the candidate reconstructions

	6 Experimental Evaluation
	7 Automatically Finding D in E(D)
	8 Conclusion and Future Work
	9 Acknowledgements
	References
	A Pseudocode
	A.1 Pseudocode of Algorithm 4
	A.2 Pseudocode of Algorithm 5

	B Proofs
	B.1 Proof of Lemma 4.1
	B.2 Proof of Lemma 4.2
	B.3 Proof of Theorem 4.4
	B.4 Proof of Lemma 5.1
	B.5 Proof of Lemma 5.2
	B.6 Proof of Lemma 5.3
	B.7 Proof of Lemma 5.4
	B.8 Proof of Theorem 5.5

	C Supplementary Content for Experiments

